Connecting remote and in situ observations of 22 coronal mass ejections from the Sun to 1 AU

Christian Möstl
University of Graz, Austria

NASA JPL, Pasadena, USA; University of Graz, Austria; RAL Space, UK; University of New Hampshire, USA; University of California, Berkeley, USA

christian.moestl@uni-graz.at
http://www.uni-graz.at/~moestlc/
ICMEs

ICME = shock + sheath + MC/MCL/MFR/ejecta

Zurbuchen and Richardson, SSR, 2006
Geometrical modeling

Finding the direction/speed of a moving object (ball, CME)

(a)

Elongation angle

Time

goalie, Earth
striker, Sun
defender, STEREO
Geometrical modeling

FPF: Rouillard et al. 2008 GRL

HMF: Lugaz, 2010 Solar Physics

March 7–8 2012

X5.4 flare peaks March 7
2012 00:26 (EUV wave)
March 7–8 2012

STEREO separation 227°
March 7–8 2012
SolarSoft SATPLOT Software

Angle vs. Time
2012-03-07 00:00, PA 88, D 4,

track extraction

STEREO-A HI1/2 ICME HM track fitting

CME angle to Earth = -60.9 deg
to STEREO-A = -170.4 deg
to STEREO-B = 57.0 deg
V = 2717 km/s

launch time: 7-Mar-2012 00:13
Arrival ACE: 8-Mar-2012 07:07
Arrival STB: 8-Mar-2012 05:06
Fitting Residue: 0.223

fitting with geometrical models (here HMF)
March 7–8 2012

Observer

Flare pos

Sun

Mercury

Venus

Earth

FP

HM

SSE

1595 km/s

2717 km/s

2201 km/s

C. Möstl HVAR ISEST 2013
March 7–8 2012

HI predictions

Wind spacecraft at L1
CME propagation speed vs. in situ speed

$V_{\text{sheath}} = 0.19956 V_{\text{CMEi}} + 335.8578$

$V_{\text{sheath}} = V_{\text{CMEi}}$

CME propagation speed to in situ observatory V_{CMEi} (km/s)

ICME sheath region speed V_{sheath} (km/s)

FPF
HMF
SSEF
Linear fit to SSEF
CME propagation from HI modeling and in situ (sheath region= speeds)

average speed difference to in situ ~300 km/s

average corrected speed difference to in situ ~60 km/s
Arrival times HI – in situ

Arrival time difference between HI geometrical modeling and in situ shock arrivals

Date of CME Event in the corona

- predicted arrival is earlier than observed

+ predicted arrival is later than observed

FPF, HMF, SSEF
Conclusions

- We connected 22 CMEs from STEREO/COR2 to HI to in situ observations at 1 AU
- our dataset now contains a wide range of CME speeds (400 – 2700 km/s)
- the arrival times match to within 7.5–8.8 hours, the speeds within 270–305 km/s on average (including apex/flank effects), deceleration of CMEs is clearly visible
- none of the methods is superior over the other in predicting the speeds and arrival times (surprising, giving the strong geometrical differences – geometry is not so important? none of them is a good description of ICME fronts?)
- for the ISEST goal we can provide CME propagation speeds and directions in HI1/2, as well as mostly definitive connections from the Sun (COR2) to 1 AU (in situ) – some ambiguities remain for interacting events!
- flux rope modeling at a later stage
This research has been funded by...

... the European Union Seventh Framework Programme (FP7/2007–2013) grant agreement n°263252 [COMESEP].

... a Marie Curie International Outgoing Fellowship within the 7th European Community Framework Programme.

.... and it would have been entirely impossible without the dedicated people working on all those instruments! Thanks!
Sources of geomagnetic storms

Gopalswamy et al., 2005, GRL

J. Zhang et al., 2007, JGR
STEREO Heliospheric Imagers
Direction to Earth:
FPF: -8°
SSEF: -41°
HMF: -61°

Apex speeds:
FPF: 1595 km/s
SSEF: 2201 km/s
HMF: 2717 km/s

Pred. L1 speeds:
FPF: 1595 km/s
SSEF: 1264 km/s
HMF: 1320 km/s

Strong differences in direction and speed arise - the CME is fast and behind the limb - confirms theoretical expectations by Lugaz and Kintner, 2012
speed comparison HI – in situ

Difference between CME interplanetary propagation speed and ICME sheath region speed

+ HI speed is higher than in situ speed
- HI speed is lower than in situ speed
shock arrival:
March 8 2012 10:24 (Wind at L1)

Arrival times:
differences are
- 9 hours (FPF)
- 2 hours (SSEF with 45° width)
- 3 hours (HMF)
earlier than actually arrived at L1

Speeds in sheath region
(= high density visible in HI Jmap)
682 +/-30 km/s,
the predicted speeds are too high,
+600 to +900 km/s!
July 12-14 2012 coronal mass ejection
July 12–14 2012

Wind (L1) SWE / MFI 2012 July 12-14 coronal mass ejection

- Magnetic field components (B)
 - B_x
 - B_y
 - B_z

- Velocity (V_p)
- Density (N_p)
- Temperature (T_p)
- Total pressure (P_tot)

- Coronal mass ejection signature
 - Sheath
 - Magnetic cloud

- Dates:
 - 2012 Jul 13
 - 2012 Jul 14
 - 2012 Jul 15
 - 2012 Jul 16
 - 2012 Jul 17
 - 2012 Jul 18

C. Möstl HVAR ISEST
Transit time

CME interplanetary propagation speed versus transit time

\[y = 9527.4x^{-0.764} \]

\[R^2 = 0.83575 \]