XVIth Astrophysical Colloquium, Hvar

I. Piantschitsch

Figure: Large Scale Propagating Disturbances and Interaction with a Coronal Hole (Taken from Olmedo 2012)

Motivation

- Coronal Waves (CWs):
 - ▶ large scale propagating disturbances in the corona
- Coronal Holes (CHs):
 - regions of low-density plasma
 - magnetic field lines open freely into interplanetary space
- Interactions between CWs and CHs
 - Which effects can be expected?
 - What are these effects useful for?

unilogo

Questions & Problems

- What is the nature of a CW?
 - wave pseudo wave hybrid
- ► Which effects are caused by CH-CW- Interaction?
 - secondary waves (reflected, transmitted, ...)
 - stationary features
 - density depletion
- ► How are these effects related to actual problems?
 - Solar wind models / CH boundaries
 - diagnostic tool for plasma parameters
 - multi-fluid vs. single-fluid
 - projection effects in observations

- What is the nature of a CW?
 - wave pseudo wave hybrid
- Which effects are caused by CH-CW- Interaction?
 - secondary waves (reflected, transmitted, ...)
 - stationary features
 - density depletion
- ► How are these effects related to actual problems?
 - Solar wind models / CH boundaries
 - diagnostic tool for plasma parameters
 - multi-fluid vs. single-fluid
 - projection effects in observations

- What is the nature of a CW?
 - wave pseudo wave hybrid
- Which effects are caused by CH-CW- Interaction?
 - secondary waves (reflected, transmitted, ...)
 - stationary features
 - density depletion
- How are these effects related to actual problems?
 - Solar wind models / CH boundaries
 - diagnostic tool for plasma parameters
 - multi-fluid vs. single-fluid
 - projection effects in observations

unilogo

Code Description

2.5D MHD Code

- TVDLF Method (first described by Toth & Odstrčil 1996)
- Fully explicit method
- standard MHD equations
- 2nd order accuracy in space and time
- transmissive boundary conditions

Future Work/Applications

Introduction

Future Work/Applications

Introduction

EXTREME VALUES

- Large (small) phase speed of secondary waves if:
 - ► large (small) initial density amplitude
 - small (large) CH density
- Large (small) peak value of 1st stationary feature if:
 - large (small) initial density amplitude
 - large (small) CH density

Figure: Morphology of 1st Stationary Feature (Taken from Piantschitsch et al. 2018a)

Figure: Comparison of Secondary Waves (Taken from Piantschitsch

et al. 2018b)

Figure: Lifetime of 1st Stationary Feature (Taken from Piantschitsch et al. 2018b)

Figure: Lifetime of 1st Stationary Feature (Taken from Piantschitsch et al. 2018b

Idealization & Constraints

- homogenous magnetic field
- ightharpoonup p = 0 over the whole computational box
- simplified shape of the CH
- certain width of the CH
- 2D simulations
- single-fluid approach

SO FAR:

comprehensive comparison of CH-CW interaction with different initial amplitudes / CH densities

NEXT STEP:

Variation of parameters:

- shape/size of CH
- magnetic field structure
- pressure
- gravity

SO FAR:

2.5D MHD single-fluid code

NEXT STEP: Two-fluid Code

- two-fluid description of the electron-proton plasma in the solar corona in order to study the heating of the protons and the electrons separately - model describes a helmet streamer that is surrounded by coronal holes (Endeve et al. 2004)
- effects of weak <u>coupling between the heavy ions</u> and the <u>coronal electron-proton components</u> to different magnetic structures in the corona (van der Holst et al. 2004, Ofman et al. 2014)

SO FAR:

2.5D MHD Code

NEXT STEP:

3D MHD Code

- first observations of upwards propagating EUV waves (Zheng et al. 2018)
- projection effects in observations

Figure: Base-ratio-difference AIA 193 A images showing upward secondary waves (red arrows) in a streamer-like structure (blue arrows). (Taken from Zheng et al. 2018)

FINAL GOAL

3D two-fluid Code + Variation of Parameters

WHY IMPORTANT?

- projection effects
- influence of two-fluid approach on existing single-fluid results
- diagnostic tool for plasma parameters
- **>**

