Solar Radio Imaging-Spectroscopy and Heliospheric Imager

Yihua Yan ^{1,2}

CAS Key Laboratory of Solar Activity, National Astronomical Observatories, CAS, Beijing, China University of Chinese Academy of Sciences, Beijing, China

Introduction

- Solar Activities are driving sources for Space Weather
 It is desirable to obtain information from Sun to Earth

Several ways available to detect information from Sun to Earth

Globally: Locally: Spacecraft (in-situ) Radio **Optic in Space (side view) Interpanetary Scintillations (IPS)**

Introduction

Radio bursts are prompt indicators of the various solar activities including flares, CMEs, and SEPs, etc.

Develop imaging-spectroscopy capacity

MUSER - Mingantu Spectral Radiheliograph

MUSER:

64 channels in 0.4-2.0 GHz & 520 channels in 2.0-15 GHz space resolution: 1.3^{7-50⁷} time resolution: ~ 25 & ~200 ms

Station Construction Progress (May 2015 – Present)

Some MUSER Observations

- burst event on 22 Oct 2014 by MUSER-II
- burst event on 11 Nov 2014 by MUSER-I
- burst event on Dec 17 2014 by MUSER-I
- quiet Sun on 7 Jan 2016 by MUSER-II
- quiet Sun on 5 Jul 2016 by MUSER-II

AR12129: Largest sunspot, energetic X-class two-ribbon flares, no CMEs (Hudson, 2014)

25 Sept 2018

A solar flare and radio bursts on 11 Nov, 2014

The solar flare starting at 04:22 on 11 Nov 2014

25 Sept 2018

SDO/AIA observations indicate an eruptive process

LASCO / C2 & Wind radio bursts

XVIIIHHAC. ISEST 2018 Workshop, 24-28 Sept 2018, Hvar, Croatia

2014/11/11

 Start
 Pause
 Faster
 Slower
 Reverse
 Rewind
 Next
 Prev.

 Frame:
 Displaying 30 of 107
 Speed:
 1
 (frames/sec)

 Monthly Table (2014/11)
 Home
 1
 1

25 Sept 2018

A M8.7 flare/CME event on 17 Dec 2014

- Coronal dimming & coronal EUV waves are usually associated with CMEs and as a signature for CME source regions (e.g., Jin 2018).
- However, for this impulsive CME event, coronal dimming weak (?), coronal EUV waves not obvious (?)

burst event on Dec 17 2014 for a M8.7 flare by MUSER-I (0.4-2 GHz) & NoRP (1,2,4,9,17,35 GHz)

25 Sept 2018

AIA/SDO 211A movie during 4-8 UT

AIA/SDO 193A movie during 4-8 UT

AIA/SDO 211A movie during 4-8 UT

Current->Start Range Start: 20 Current->Stop Range Stop: 54 Clear Range

Prev Day -24h -12h -8h -4h -2h +2h +4h +8h +12h +24h Next Day

25 Sept 2018

MUSER 0.4-2 GHz & RHESSI/NoRH Images

RHESSI HXR sources and NoRH 17/34 GHz sources confined at the lowlying central arcades whereas MUSER sources are extended over the doom and large-scale structures.

Initial result with MUSER-II of quiet Sun

CSRH-II images @04:35 UT of the quiet Sun at 4.0375 4.0875、4.1375、4.1875 GHz and comparisons with SDO & NoRH 17 GHz observations on 7 Jan 2016.

17 GHz

25 Sept 2018

MUSER Data on July 5 2016

- Quiet Sun.
- Time: 2 hours (3:04 5:04UT)
- Frequency: 4.1875GHz; Integration: 60ms / frame

Meridian-II Project

National Science Infrastructure Project under "13th 5-year plan" program (2016-2020) has been approved.

Solar & Interplanetary Subsystem as a new part in Meridian-II:

- Metric & decametric arrays in Tibetan Plateau (by NSSC) & Mingantu
- **IPS telescope** with 3 sites and 2 frequencies including major one at Mingantu

Use 2 20 m antennas for MUSER-I Calibration Add 2-3 ~15 m antennas for MUSER-II Calibration

MUSER at metric & decametric wavelengths

- Array of ~100 LPDA elements
- + 80 LPDA (as calibration element)
- Calibration element also use as spectrometer

Performances

Freq range: $30 \sim 240$ (400) MHz

Antennas: \sim 100 LPDA +

calibration element (80 LPDA)

Max baseline: \sim 3000 m

- Δf: 1~5 MHz
- Δt: ~100 ms

Polarization:
$$I \setminus Q \setminus U \setminus V$$

MUSER at metric & decametric wavelengths

an array for heliospheric imager

Interplanetary scintillation (IPS)

Current facilities: (ORT, MEXART) 1 station with larger collecting areas (ISEE) multiple-stations with intermediate size

Ooty IPS – 3-D Reconstruction

2015/06/17 18

30

(Courtesy of Manoharan)

Features for IPS Observation

- Larger collecting area: to observe more radio sources
- Multi-sites: to measure the projected solar wind parameters directly.
- With dual-frequency:
 - 1. Achieve higher accuracy in the calculation of the characteristic frequency
 - 2. Reduce the effects from the variation of the solar wind parameters
 - 3. Obtain higher sensitivity

A new Telescope Concept

A new solution is proposed:

- The whole IPS telescope consists 3 sites, one main site and 2 sub-site.
- Main site: 3 cylinder antennas placed side by side, and size of each antenna is 140m in N-S direction and 40m in E-W direction; plus available 20m parabolic antenna.
- Sub site: a 15~20m parabolic antenna with cryogenically cooled receiver.

Specification	
Antenna	Main site: 140m*40m*3 cylinder, 20m dish Sub site1: 16m, dish Sub site2: 16m, dish
Frequency	327MHz, 654MHz,1420MHz (for dishes)
System temperature	Main site: 110K Sub site1: ~120K Sub site2: ~120K
Antenna Effiency	Main site: ~65% Sub site1: ~70% Sub site2: ~70%
Sensitivity	~4.4mJy@1s, ~167 mJy@1s, ~261 mJy@1s
Band Width	40MHz (adjustable)

Three Station Chinese IPS Telescopes

- Mingantu IPS Main Station: 3 * 140 m (NS) * 40 m (EW) cylinders with collecting area ~> Ooty telescope
 + Φ20m steerable parabolic antenna (available)
- Sub-stations: Φ15~20m steerable parabolic antenna

(Profs. Ramesh and Manoharan are gratefully acknowledged for comments and suggestions to improve the design for Chinese IPS telescope)

NCLE on Chang'E-4 Relay Satellite

80 kHz - 80 MHz

NCLE team after launch

Chinese team before launch

Type III Bursts

Type II Bursts

Complementary observations with PSP, Solar Orbiter

Summary

- Solar & Interplanetary sub-system has been included in Meridian-II project
- Solar Radio observing facilities will play important role in future space weather studies and monitors. Observations with PSP, Solar Orbiter
- A part of WIPSS

The Workshop on Solar Radio and IPS Data Analysis, Tongliao, Inner Mongolia, China, 15-18 October 2018. (http://wsrips2018.csp.escience.cn/dct/page/1)