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HELIOSPHERIC OBSERVATORIES 

SOHO/LASCO 

Wind/SWE,MFI 

Definition and 
terminology of ICMEs? 

Jian et al 2006 
Richardson & Cane, 2006 

Zuberchen & Bothmer, 2006  Webb et al. 2012, review 



ICME FLUX ROPES – THE THIRD DIMENSION 

[Torok et al. 2018, ApJ.] 

[Savani et al. 2010, ApJ.] 

[Dasso et al. 2012, Procc. IAU Symp.] 

[DeForest et al. 2013, ApJ.] 

[Nieves-Chinchilla et al. 2012, ApJ.] 

[Owens 2017, NatSR.] 
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How reliably can we link solar to in 
situ CME observations? 



INTERNAL STRUCTURE WITHIN THE ICMES 

Burlaga & Behannon, Sol. Phy. 1982. 

Magnetic clouds – flux ropes 

Magnetic Obstacles (MOs) 
vs. Magnetic Clouds (MCs) 



 MOs Near earth ICMEs – WIND 1995 – 2015 (Nieves-Chinchilla et al. 2018, Sol. Phys.) 

Magnetic clouds, flux-rope, 
Flux-rope-like, magnetic-
cloud-like, complex ejecta, 
no-classic-magnetic-cloud… ? 

INTERNAL STRUCTURE WITHIN THE ICMES 



QUESTIONS: 
 
q What would be the in-situ 

mag observations for 
different s/p trajectories 
crossing a FR? 

TO-DO LIST: 
 
ü  Create synthetic data for 

all (enough) FR 
configurations to figure out. 
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2. Circular Cross-Section Model

In this paper we present a model for a flux-rope with circular-cylindrical geometry
based on the case published by Hidalgo et al. (2002a). The model does not assume any force

distribution on the magnetic structure but makes assumptions for the axial and poloidal
current density components which we proceed to discuss.

The model uses the circular-cylindrical coordinate system (Figure 1),

x = r cosϕ, y = y, z = r sinϕ (1)

The base vectors are,

−→ϵ r = cosϕ−→u x + sinϕ−→u z

−→ϵ y = −→u y (2)
−→ϵ ϕ = −r sinϕ−→u x + r cosϕ−→u z

and the scale factors to normalize the base vectors are,

hr = 1, hy = 1, hϕ = r. (3)

In this coordinate system, the Maxwell equations, ∇ ·
−→
B = 0 and ∇ ×

−→
B = µ0

−→
j can

be solved under the cylindrical approximation (without radial magnetic field component,

Br = 0, and axial invariance, ∂y✷ = 0).

In the most general case, any of the current density components can be nonzero. Here,

we assume jr = 0, which implies that the other two components are independent of the
poloidal component. The implications from a nonzero radial current density require a more

exhaustive analysis which is beyond the scope of this paper. Consequently, jϕ = jϕ(r) and
jy = jy(r). Then, the magnetic field components are given by,

Br = 0

By = µ0

∫ R

r

jϕ(r
′)dr′ (4)

Bϕ = −
µ0

r

∫ r

0

r′jy(r
′)dr′

where R is the flux–rope cross-section radius and r is the radial coordinate.

Equations 4 describe the core of this model and any other physical quantity can be
derived from these equations. For instance, Handeness is defined by the sign of the current

density components. Because the poloidal component must always be positive to keep the

Circular-
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axial magnetic field component parallel and in the same direction to y- axis, the sign in

the axial component determines handedness. Therefore, positive values of jy imply negative
chirality (Left-handed) and vice versa, Figure 1.

The axial (φy) and poloidal (φϕ) magnetic fluxes can be calculated from,

φy =

∫ Sr

0

By dS
′

r

φϕ =

∫ SL

0

Bϕ dS
′

L

where Sr = πr2, SL = rL, r is the radial coordinate, and L is the distance to the Sun.

Because we do not impose a force-free condition we can include the plasma pressure in

the force balance equation. Under the conditions in the model, the gradient of the plasma
pressure will be in the radial direction only.

∇P =
−→
j ×

−→
B = jyBϕ − jϕBy (5)

Finally, the number of turns in the flux-rope also is determined by the model components

as

N1AU = |
Bϕ

2πrsatBy

| (6)

The implication in the forces distribution is determined by the current density compo-
nents. Next, we explore a case where the radial variation of the current density components

is in polynomial form and study the degree of force-freeness for specific cases of poloidal and
axial current density components.

2.1. Current density components as polynomial function

An approach to the current density radial variations is a polynomial function,
−→
j =

(0,
∑

∞

m=0
βmrm,

∑

∞

n=1
αnrn). Under this configuration, the magnetic field components (from

equation 4) are given by,

Br = 0

By = B0
y − µ0

∞
∑

n=1

αn
1

n+ 1
rn+1 (7)

Bϕ = −µ0

∞
∑

m=0

βm

rm+1

m+ 2
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To compare the model with the in-situ observations… 
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 SYNTHETIC DATA OF A VIRTUAL S/P CROSSING A FR 

Internal magnetic configuration I 
(Bothmer & Schwenn, 1998) 

BIPOLAR configuration  



Internal magnetic configuration II 
(Mulligan et al. 1998)  

UNIPOLAR configuration  

 SYNTHETIC DATA OF A VIRTUAL S/P CROSSING A FR 



 SYNTHETIC DATA OF A VIRTUAL S/P CROSSING A FR 

What is the threshold between Bipolar and 
Unipolar?  
θ= 45o [Mulligan et al. 1998, Huttunen et al. 2005] 
θ= 35o-55o [Palmerio et al. 2018] 

φ=90°; Y0 = 0.10R; H=+

  Ti  Tf  
Time − Flux rope duration

−1

0

1

B y/B
y0

θ=0° θ=30° θ=60° θ=90° 
a)

For a front (Φ=90oor 270o) ICME –F 
the Bz changes in the polarity will be 
between 70% to 90% if the tilt (θ) is  
30o – 60o. 



Lepping & Wu, 2010 

Nieves-Chinchilla et al.
2018b, in preparation 

 SYNTHETIC DATA OF A VIRTUAL S/P CROSSING A FR 
For BIPOLAR configurations - Does the longitude matter? 



QUESTIONS: 
 
q What would be the in-situ 

mag observations for 
different s/p trajectories 
crossing a FR? 

 
ü  Check a large set of ICMEs 

with MOs and see how 
many display FR signatures 

 
q  How many display such 

expected FR signatures?  

TO-DO LIST: 
 
ü  Create synthetic data for 

all (enough) FR 
configurations to figure out. 



 MODELING HELIOSPHERIC FLUX-ROPES – WIND 1995 - 2015 

https://wind.nasa.gov/ICMEindex.php 



Criteria 
 
»  Fr : Single rotation [90o-180o]. 

»  F- : Single rotation <90o.  

»  F+: Single rotation >180o.  

»  Cx : Multiple rotations.  

»  E : No-clear rotation.  

SORTING ICMES BY COMPARING WITH SYNTHETIC DATA 

1995 October 18 

1995 February 7 

1997 February 10 

2006 September 6 

2012 September 4 

16 



 MODELING HELIOSPHERIC FLUX-ROPES – WIND 1995 - 2015 

17 

F è 80%          F è 76%         F è 81%                 

MIN    MAX          MIN        MAX   

1.  ICMEs/MO & Fr follow the SC trend. 
2. Maximum occurrence of Cx & E around 

SC maximums.  



 MODELING HELIOSPHERIC FLUX-ROPES – WIND 1995 - 2015 

Longitude (φ) initially in the range from 0◦ to 360◦, have been 
folded to a range from 0◦ to 90◦. The new angle φf assesses if the 
flux rope axis is aligned (φf = 0◦) or perpendicular (φf =90◦) to the 
observer (sun-earth line). 

Φf=0o 

Φf=90o 

1. Visual inspection does not show any privilege in the axis longitude.  
2. Quantitatively there is a slight tendency to be perpendicular to the 

observer.  



 MODELING HELIOSPHERIC FLUX-ROPES – WIND 1995 - 2015 

•  During the rising phase of SC23 and SC24 the 
axis orientation is mostly perpendicular to the 
observer. 

MIN MIN MAX MAX 

•  Around SC23 maximum and declining phase 
towards SC24 minimum the axis orientation is 
mostly along to the Sun-Earth line. 

Φf=0o 

Φf=90o 

? 



 MODELING HELIOSPHERIC FLUX-ROPES – WIND 1995 - 2015 

•  Tilt(θ) initially in the range from -90◦ to 90◦, have been folded to a range 
from 0◦ to 90◦. The new angle θf assesses if the flux rope axis is on the 
ecliptic plane (θf = 0◦) or perpendicular (θf =90◦) to the ecliptic plane. 

θf=0o 

θf=90o 

1. Visual inspection shows a clear increase in the occurrence for the low tilted FRs (θ<30o).  
2. Quantitatively more than 56% of the event are low tilted.  



 MODELING HELIOSPHERIC FLUX-ROPES – WIND 1995 - 2015 

MIN MIN MAX MAX 

•  Around maximum and mostly in the declining 
phase of SC23 and SC24 the occurrence of FR 
highly tilted are maximum, while the minimum 
and rising phase of SC23 and SC24 the FRs tilt 
are lowly tilted. 

•  There is ~20% of the events that remain low tilt 
depict of the background solar wind orientation. 

  
•  Inclination or tilt of the flux rope follow the SC 

trend and the HCS tilt. This result suggests 
that the solar wind orientation could affect to 
the CME orientation.  

H
C

S
 



MIN MAX MIN MAX 

Comparing previous studies based on visual 
inspection [Li et al. 2011, 2014, 2018]: 
 
ü  During the rising phase [Min to Max] the 

SN (SC23) configuration and NS (SC24) 
dominate. 

ü  During couple of years around the 
minimum (couple of years) the events 
display exclusively SN or NS polarity. 

 
Ø  However, during the declining [Max to 

Min] phase there is not clear dominant 
configuration.  

POLARITY 

[Hybrid] NSN, NSS, SNN,SNS 

NS, or SN 

ü  There is a cyclic reversal of the bipolar 
magnetic field flux rope configuration 



TAKE-AWAYS 
1.  Not every thing that glitters is a flux rope!! 

•  Flux ropes have a solar cycle (SC) dependence.  
•  ~80% of the ICME-MOs are flux ropes but just ~45% display signatures of ‘pure’ 

flux rope.  
•  Complex structures and Ejecta occurrence increases during the maximum. 

2.  The ICMEs configuration have a solar cycle dependence. 
•  The occurrence of the events with perpendicular axis to the observer increases 

during the rising phase of the SC.  
•  The occurrence of the events highly inclined increases during maximum and 

declining phase.  

3.  The flux rope polarity is not binary but diverse. 
•  Between the Bipolar [NS, SN] and Unipolar configurations there are Hybrid 

configurations [NSN, NSS, SNN,SNS] that we quantify and describe based on 
the longitude and tilt. 

•  There is a cyclic reversal of the bipolar magnetic field flux rope configuration.  


