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What do we need to know to predict CME effects (at Earth)?

1. = a CME will impact — trajectory away from Sun
2. a CME will impact — arrival time
3. a CME will impact — orientation and speed

Need to know In real-time or quicker to be able to give
warnings

Focus here on , specifically, in situ magnetic field (Bs),
but this is intrinsically related to answering '~ and

Southward important for storms, but all components
iImportant for understanding actual physics



Forward modeling vs. reconstructing

e Different approaches using the same observations

* Forward - use what we already from the corona
to what we will see In situ

 Reconstructing - use what we see In situ to compare
with what we already knew

| 1
e See T. Nieves-Chinchilla’s talk for different perspective
(after break)
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Reconstructing In Situ

»
por 4

e Approximate locally as cylinder

|

1 '

—_— '
|

| @_\.;;’
e AXis orientation in 3D specified : 4
by two angles

e | east-squares fitting of flux rope - dhidy - 4
change parameters to minimize
error

Image from Watermann+ 2009



Comparing In Situ Reconstructions

Event GS FF
Year Xred MT)  6(°)  D(°)  xpeq (nPa) 0(°) D)  Yreq (nT)

1997 232 0.028 214  —16 0.017 231 =27 0.038
1998 232 0.044 265 13 0.017 294 28 0.050
2000 R 35 0.045 2 41.5 0.023 357 48 0.11

2001 0.025 302 =35 0.017 272 —48 0.062
2002 R 0.035 146 —12 0.015 114 18 0.11

2008 ' 0.033 20 12 0.015 306 68 0.075
2009 R 0.036 323 14 0.017 86 —1 0.101
2012 0.021 105 —13 0.018 285 10 0.075
2012 R 55 0.023 268 40 0.023 301 0.050
2013 R 55 0.018 330 —66 0.018 240 -62 0.050
2013 35 5 0.063 53 =50 0.019 4 74 0.043
2014 R 0.021 236 27 0.021 116 51 0.10

2015 3 0.041 158 49 0.021 294 28 0.053

Image from Al-Haddad+ 2018 ~Half have orientation within 45°
* Reconstructions often disagree (e.g. Al-Haddad 2018)
e \ariations between different models
e Variations between different modelers

 Uncertainty in chosen boundaries

* Degeneracy in solutions



Comparing with Coronal Reconstructions

« CME positions and orientations
reconstructed in corona typically do
not match in situ reconstructions

+ Uncertainty in corona or in situ?
(probably both)

 Evolution between? (probably
small beyond outer corona for
most cases)

Images from Palmerio+ 2018

- Marubashi+ (2015) - typically less :
than 30° (54 CMEs)

« Wood+ (2017) - generally don’t
match (31 CMEs)

- Palmerio+ (2018) - half vary by less
than 45° (20 CMEs)




Comparing Spatially Separated

 Reconstructions of same CME from spacecraft separated
In longitude and/radial distance often disagree

* Oversimplifying large scale CME shape?
e Evolution with distance?
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Comparing Spatially Separated

 Reconstructions of same CME from spacecraft separated
In longitude and/radial distance often disagree

* Oversimplifying large scale CME shape?
e Evolution with distance?

 Uncertainty in reconstruction?
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Big Picture Studies

e Can develop a more clear
and coherent picture by
studying the full evolution of . -
a CME from Sun to Earth e
(e.g. Mostl+ 2015, PRI

09:54 UT: Solar Demon EUV dimming peaks

P atSO u ra kOS + 2 O 1 6 y 10:05 UT: GOES flare peaks

10:10 UT: Type Il and Ill radio bursts end

d’Huys+ 2017, Temmer+ —_—
2 O 1 7) 10:14 UT: Solar Demon flare peaks

10:24 UT: CME enters STEREO-A/COR2 FOV

08:50 UT: Filament starts to rise

10:39 UT: CME enters STEREO-B/COR2 FOV

e Use information from
earlier in evolution to —
constrain behavior farther

O u.t >17 UT: STEREO-A/WIND and IMPACT observe ICME

11:26 UT: Solar Demon EUV dimming ends

2010 August 15...16 2010 August 17

e Abundance of available Image from d’Huys+ 2017
Information




Magnetic (?) Big Picture Studies

 Majority of studies stop before rigorous in situ comparison

e Mostl+ 2015 - glancing blow

e Patsourakos+ 2016 - complicated case, apply circular flux rope
but results vary wildly with chosen boundary

e Temmer+ 2017 - apply Lundquist, sensitive to boundary

* Highlights difficulty/uncertainty in reconstructing from in situ
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Magnetic (?) Big Picture Studies

 Majority of studies stop before rigorous in situ comparison

e Mostl+ 2015 - glancing blow

e Patsourakos+ 2016 - complicated case, apply circular flux rope
but results vary wildly with chosen boundary

e Temmer+ 2017 - apply Lundquist, sensitive to boundary
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Z(_ISI;‘

Image modified
from mit.edu

N0
’< R
. \‘4 ‘ gzgf\‘t

(ol

Image from Watermann+ 2009




Forward Modeling



Forward Modeling

e Rather than reconstructing, use information from corona to
forward model

e Routinely done for arrival time

10



Forward Modeling

e Rather than reconstructing, use information from corona to
forward model

e Routinely done for arrival time

e \What do we need?

e CME position, orientation, size, shape, flux rope model

10



Forward Modeling

e Rather than reconstructing, use information from corona to
forward model

e Routinely done for arrival time

e \What do we need?

e CME position, orientation, size, shape, flux rope model

e Can measure most values in corona, with some
uncertainty, then propagate to 1 AU

10



Forward Modeling

Rather than reconstructing, use information from corona to
forward model

e Routinely done for arrival time

What do we need?

e CME position, orientation, size, shape, flux rope model

Can measure most values in corona, with some
uncertainty, then propagate to 1 AU

Highly scalable in level of complexity for each parameter

e |.e. 2D vs. 3D, constant with distance, self-similar...

10



BzForecast (Savani+ 2015)

Measure a CME’s location, determine a satellite’s relative
location, apply simple flux rope model

» GCS fits to get position/orientation,
angular width

 (Cross-sectional width determined by
statistical properties of CMEs

X * Speed from observations/1 AU
- predictions

— sl een

* |Lundquist force-free flux rope model

I

e i  Bothmer-Schwenn orientation
e Strength from WSA-ENLIL+Cone

e (Calculate Kp as well

January 2014, Day

11



FRI3D (Isavnin+ 2016)

GCS fits to start/for comparison

Much more flexible shape than
BzForecast

e Can add flattening,
pancaking, and skewing

Speed from avg. observed

Lundquist flux rope

X

Perform independent to
coronal and in situ

e Hint at future forward
modeling using early fits
(coronal, HI, in situ) to drive
later predictions

2010-12-15 2010-12-16

12



Accuracy v. Usabllity

As models become more complex they can better
reproduce the observations but it becomes harder to
accurately determine all their free parameters

Complex/Accurate

Simple/Usable

BzForecast FRi3D
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Accuracy v. Usabllity

As models become more complex they can better
reproduce the observations but it becomes harder to
accurately determine all their free parameters

Complex/Accurate

Simple/Usable

BzForecast FRi3D

FIDO is part of a suite of models designed to answer (-,
, and and use the uncertainty in input
parameters to determine the likelihood of predictions

13



Combined (Simplified) Modeling

ForeCAT
[1. Determine]
CME Grid

~1 % OSPREI

_ Operational Solar Physics Real-time
Determine Determine Magneti Ensemble Information

expansion and|| deflection
propagation and rotation

FIDO

4 B
1. Determine

location of
toroidal axis
\_ y

v
ANT EATR J " r2. Determinej

location in

é ) cati
1. Determine L an) _ CME J 5. CME
. drag force y * moves/

* e (~ 1 expands
negrEr e b 3. Apply
( ) el )
2. Propagate e simple flux
CME rope model
J \

J

* Propagation *

r w . ~ ~
3. Determine if Time 4. Rotate to

Earth in CME spacecraft
. J coordinates

v

*Just for flux rope!l!! Shock/sheath would be additional components
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Combined (Simplified) Modeling

ForeCAT
[1. Determine]
CME Grid

~1 3 OSPREI

_ Operational Solar Physics Real-time
Determine Determine Magneti Ensemble Information

expansion and|| deflection
propagation and rotation

FIDO

4 B
1. Determine

location of
toroidal axis
\_ )

v
ANTEATR et r2. Determinej

location in

( b catiol
1. Determine ey 5. CME
. drag force y * moves/

* R a ) expands
Magnetic Field 3. Apply
r ) gnitud \
2. Propagate e simple flux
CME ‘ rope model
J L

J

* Propagation *

4 ~ . a ~
3. Determine if Time 4. Rotate to

Earth in CME spacecraft
\. J coordinates

v

*Just for flux rope!l!! Shock/sheath would be additional components



ForeCAT Model

Forecasting a CME’s Altered Trajectory

e Simple analytic model for CME
deflection and rotation from JxB of n
external solar background
(Kay+2015 - 3D version)

e Rigid torus shape
e Only external forces
e Highly computationally efficient

Cartoons from Kay+ (2015)

e CME expansion and radial
propagation from empirical models
constrained by observations

15



ForeCAT Results

e Reproduces global trends in CME
deflection/rotation

e Deflection away from CH
toward HCS

e More massive/faster deflect
less

Latitude (°)
(SY) @oueisig

80 100 120 140 160 180 200 220
Longitude (°)

e Reproduce specific observed
cases (e.g. Kay+20173,
Capannolo+2017)

e Compare

;\
Q
©
-
=
)
©
-
;\
Q
©
-
=
(@)
-
o]
-

with

ForeCAT results

Tilt (°)

25 3.0 35
Distance (Rs)




FIDO Model

ForeCAT In situ Data Observer

1. Take ForeCAT results for
latitude, longitude, and tilt

9
8
7
6
[a)
(]
5 ~
4
3
2
1

2. Pass torus over spacecraft
to get distance from torus S e .
g b A
axis S

3. Apply simple flux rope
model

e Aiming for ~hourly averages

e Total magnitude By free
parameter/automatically
scaled

code available github.com/ckay314/FIDO

17


http://github.com/ckay314/FIDO

FIDO Results

« ForeCAT yields 7° latitudinal
deﬂeCtion, 2° |OngitUdina| 15 February 2011
deflection, and 18° rotation

« Compare IN{&d HeFie: With

FIDO using and

« Undeflected does not
impact!

» Simulate 150 random cases
with lat/lon/tilt that differ from Time (hours)

the deflected ForeCAT result Figure from Kay+ (2017b)
by less than +5°/10°/10°

18
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FIDO Results

« ForeCAT yields 7° latitudinal
deflection, 2° longitudinal 15 February 2011
deflection, and 18° rotation

« Compare IN{&d HeFie: With

FIDO using and

« Undeflected does not
impact!

» Simulate 150 random cases
with lat/lon/tilt that differ from Time (hours)

the deflected ForeCAT result Figure from Kay+ (2017b)
by less than +5°/10°/10°

18



~ W DN

45 CMEs Study

Set of 45 CMEs with STEREO observations and identified ICME
counterparts (Richardson+Cane ICME list)

. Identify precise source location using SDO and HMI magnetogram
. Fit GCS to observations from both STEREO coronagraphs
. Simulate the coronal behavior with ForeCAT

. Compare the FIDO results with ACE and Wind data

 FIDO driven by both ForeCAT and GCS position/orientation

e FIDO best fits to in situ observations — difference between our
ability to determine FIDO inputs vs. limitations of a simple model

19



Example Case

24 May 2010 CME

SDO 193 A

\ SDO/AlA— 193 20100524_134532

SDO/HMI Magnetogram: 20100524 _134500

20




Example Case

24 May 2010 CME

1.3-4 solar rad
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Example Case

e 24 May 2010 CME

BTl
7Ry ¥ y
G

Running difference of white-light/visual observations

2-15 solar radii
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Example Case

24 May 2010 CME

Longitude (°)

O
n
~t
Y
=
A
®
b
S
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Example Case

e 24 May 2010 CME

24 May 2010 14:06

148.8 149.0 149.2 149.4 149.6
Day of Year

149.8
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In Situ Quality of Fit

24 May 2010 14:06 24 May 2010 14:06

ul

’3'000831111

148.8 149.0 149.2 149.4 149.6 149.8 148.8 149.0 149.2 149.4 149.6
Day of Year Day of Year

* First rigorous metric defining the quality of fit to in situ observations

e Comparison of vector magnitude of average hourly error in each
component with total magnetic field strength

e Scores range between 0 (best) and 2 (worst)

e 1 ~ correct sigh and magnitude within factor of two

149.8

21



In Situ Score Summary

ForeCAT driven results tend to outperform GCS by
~0.1

e Average score 0.7 for ForeCAT-driven results
e Ranges between 0.2 and 1.05

e Do have few cases where GCS is better

Best fits tend to outperform ForeCAT-driven by ~0.1

e Some room for improvement in input parameters,
but fundamental limit based on physics include In
model

22



Ensemble Project

Six CMEs selected from previous study
* Range of deflections and rotations

Simulate 100 CMEs with small range in initial latitude,
longitude, and tilt in ForeCAT (2°/2°/10°)

e All other parameters held constant

Use ForeCAT results to drive FIDO and ANTEATR

ForeCAT

23



Example Case - Coronal Behavior

o 28 September 2012 CME

e Compare
with

e Deflects 7° N and 24° E
e Rotates 1.5°

Full Range

pL



Example Case - Coronal Behavior

o 28 September 2012 CME

e Compare
with

e Deflects 7° N and 24° E
e Rotates 1.5°

e Range of and full
ensemble

e Lat def variation ~half
of total motion

® Lon def variation small

® Ensemble consistent
with no rotation uRaioe

pL



Example Case - Impact Percentage

e Projection of CME torus shape >95%, 75%, 50%,

onto solar surface

e Determine percentage of
ensemble members that
would impact based on
latitude and longitude

~
o
N
)
=
=)
=
=
(]
d

e Earth impact skims along
cross-sectional edge near
CME nose

e 86/100 expect to impact e
* Sensitive to width % Initial Location

@® Earth Location
25



Example Case - In Situ Profiles

e Use final lat/lon/tilt from each
ensemble member

e Scale to match observed
average magnitude and
duration — focus on change in
profile

e "Core” typically matches obs.
e Small variations in By and B;

e Full range of Bx shows profiles
with both polarities

Full Range

26



Latitude (°)
Latitude (°)

Longitude (°)
N
N
[
Longitude (°)

B (nT)

1]
9
8
7
6
5
4
3
8
6
4
2
(o]
2

B, (nT)
|

I
LX)

20 30 20 10 15
Time (hours) Time (hours) Time (hours) Time (hours) Time (hours)

e Same magnitude of uncertainty in initial parameter leads to variety
of coronal behavior

 Uncertainty not uniform between lat/lon/tilt or Bx/By/B:

e |arger coronal uncertainty — larger in situ uncertainty

27



ANTEATR Model

Another Type of Ensemble Arrival Time Results

Radially propagate ForeCAT CME from ~20 Rs to near 1 AU
Drag from background solar wind

Fp = -Cp A psw (VcME - Vsw) | VeME - Vsw |
Simple solar wind model

* v constant, p falls as R2

Add “in CME” check from FIDO once near 1 AU

* Determine both transit time and velocity at contact

CME shape/location more complex (3D) than most other
models but drag/background less complex (1D)

28



Arrlval Tlme Results

NN WW A
ouiIoU1IOUIOUIO

Counts

32 3.4 3.6 3.8 2.6 2.7 28 29 3.0

S U1
o O

ts

Cou
NN WWEA
oUIOUIOUIOUIO O L

20
10
0

2.95 3.00 3.05 3.10 3.0 35 4.0 45 5.0

Bt
2.8 3.0 3.2 3.4 3.6 3.82 3.86 3.90 3.94

Transit Time (days) Transit Time (days)

e One CME has obs. coronal v (CDAW) < transit time v
e Average error in median predicted value only 3 hours
e Average range of 11.3 hours

e Average error in velocity of 15 km/s

29



Deriving Sensitivity

* Want to quantify how accurately CME | 19°/6 hours
position must be known for accurate
arrival times

Distance (°)

e Determine change in CME position that
corresponds to change of six hours
(~average best-case error in field)

e Rate varies from case to case (0.5° to 19°)

e | ess sensitive near CME nose

(V)
o
c
©
o
=2
(=)

e On average, 6 hours corresponds to
about 8°

* Very limited sample, not entirely linear,
— order of magnitude estimate! S

30



Summary

Big picture studies can provide more insight than simply considering
a small portion of a CME’s evolution

e Combination of distances and observations + modeling

Forward modeling can yield useful information about in situ magnetic
fleld and arrival time

Uncertainty in initial parameters can have large effects on results

e Shown for model-driven forward modeling, certainly holds for
(GCS) reconstruction-driven results

In the future, using distribution of ensemble results will allow for
assigning probability to predictions

31



