#### The Effects of Uncertainty on Deflection, Rotation, and Bs predictions

Christina Kay NASA GSFC/CUA <u>christina.d.kay@nasa.gov</u> (while traveling - <u>ckay314@gmail.com</u>)

#### The Effects of Uncertainty on Deflection, Rotation, and Bs predictions + arrival times

Christina Kay NASA GSFC/CUA <u>christina.d.kay@nasa.gov</u> (while traveling - <u>ckay314@gmail.com</u>) The Effects of Uncertainty on Deflection, Rotation, and Bs predictions + arrival times

Advocating forward modeling and system studies

> Christina Kay NASA GSFC/CUA <u>christina.d.kay@nasa.gov</u> (while traveling - <u>ckay314@gmail.com</u>)

What do we need to know to predict CME effects (at Earth)?

What do we need to know to predict CME effects (at Earth)? 1. IF a CME will impact → trajectory away from Sun

What do we need to know to predict CME effects (at Earth)?
1. IF a CME will impact → trajectory away from Sun
2. WHEN a CME will impact → arrival time

What do we need to know to predict CME effects (at Earth)?
1. IF a CME will impact → trajectory away from Sun
2. WHEN a CME will impact → arrival time
3. HOW a CME will impact → orientation and speed

What do we need to know to predict CME effects (at Earth)?
1. IF a CME will impact → trajectory away from Sun
2. WHEN a CME will impact → arrival time
3. HOW a CME will impact → orientation and speed

Need to know in <u>real-time or quicker</u> to be able to give warnings

What do we need to know to predict CME effects (at Earth)?
1. IF a CME will impact → trajectory away from Sun
2. WHEN a CME will impact → arrival time
3. HOW a CME will impact → orientation and speed

Need to know in <u>real-time or quicker</u> to be able to give warnings

Focus here on HOW, specifically, *in situ magnetic field (Bs)*, but this is intrinsically related to answering IF and WHEN

What do we need to know to predict CME effects (at Earth)?
1. IF a CME will impact → trajectory away from Sun
2. WHEN a CME will impact → arrival time
3. HOW a CME will impact → orientation and speed

Need to know in <u>real-time or quicker</u> to be able to give warnings

Focus here on HOW, specifically, *in situ magnetic field (Bs)*, but this is intrinsically related to answering **F** and **WHEN** 

Southward important for storms, but all components important for understanding actual physics

#### Forward modeling vs. reconstructing

- Different approaches using the same observations
  - Forward use what we already "know" from the corona to "predict" what we will see in situ
  - Reconstructing use what we see in situ to compare with what we already knew



 See T. Nieves-Chinchilla's talk for different perspective (after break)

#### Forward modeling vs. reconstructing

- Different approaches using the same observations
  - Forward use what we already "know" from the corona to "predict" what we will see in situ
  - Reconstructing use what we see in situ to compare with what we already knew





 See T. Nieves-Chinchilla's talk for different perspective (after break)

## **Reconstructing In Situ**

- Approximate locally as cylinder
  - Axis orientation in 3D specified by two angles

 Least-squares fitting of flux rope change parameters to minimize error



Image from Watermann+ 2009

#### **Comparing In Situ Reconstructions**



#### Image from Al-Haddad+ 2018

~Half have orientation within 45°

FF

 $\theta(^{\circ})$ 

231

294

357

272

114

306

86

285

301

240

44

116

294

 $\Phi(^{\circ})$ 

-27

28

48

-48

18

68

-1

10

-30

-62

-74

51

28

 $\chi_{red}$  (nT)

0.038

0.050

0.11

0.062

0.11

0.075

0.101

0.075

0.050

0.050

0.043

0.10

0.053

b/a

0.5

0.6

0.6

0.9

1

0.6

0.6

0.7

0.6

0.8

0.5

0.9

Cx

χred (nPa)

0.017

0.017

0.023

0.017

0.015

0.015

0.017

0.018

0.023

0.018

0.019

0.021

0.021

- Reconstructions often disagree (e.g. Al-Haddad 2018)
- Variations between different models
- Variations between different modelers
  - Uncertainty in chosen boundaries
  - Degeneracy in solutions

#### **Comparing with Coronal Reconstructions**

- CME positions and orientations reconstructed in corona typically do not match in situ reconstructions
  - Uncertainty in corona or in situ? (probably both)
  - Evolution between? (probably small beyond outer corona for most cases)
- Marubashi+ (2015) typically less than 30° (54 CMEs)
- Wood+ (2017) generally don't match (31 CMEs)
- Palmerio+ (2018) half vary by less than 45° (20 CMEs)





6

#### **Comparing Spatially Separated**

- Reconstructions of same CME from spacecraft separated in longitude and/radial distance often disagree
  - Oversimplifying large scale CME shape?
  - Evolution with distance?
  - Uncertainty in reconstruction?

#### **Comparing Spatially Separated**

- Reconstructions of same CME from spacecraft separated in longitude and/radial distance often disagree
  - Oversimplifying large scale CME shape?
  - Evolution with distance?
  - Uncertainty in reconstruction?



Demoulin+ 2014

## **Big Picture Studies**

- Can develop a more clear and coherent picture by studying the full evolution of a CME from Sun to Earth (e.g. Möstl+ 2015, Patsourakos+ 2016, d'Huys+ 2017, Temmer+ 2017)
  - Use information from earlier in evolution to constrain behavior farther out
  - Abundance of available information



Image from d'Huys+ 2017

- Majority of studies stop before rigorous in situ comparison
  - Möstl+ 2015 glancing blow
  - Patsourakos+ 2016 complicated case, apply circular flux rope but results vary wildly with chosen boundary
  - Temmer+ 2017 apply Lundquist, sensitive to boundary
- Highlights difficulty/uncertainty in reconstructing from in situ

- Majority of studies stop before rigorous in situ comparison
  - Möstl+ 2015 glancing blow
  - Patsourakos+ 2016 complicated case, apply circular flux rope but results vary wildly with chosen boundary
  - Temmer+ 2017 apply Lundquist, sensitive to boundary
- Highlights difficulty/uncertainty in reconstructing from in situ



- Majority of studies stop before rigorous in situ comparison
  - Möstl+ 2015 glancing blow
  - Patsourakos+ 2016 complicated case, apply circular flux rope but results vary wildly with chosen boundary
  - Temmer+ 2017 apply Lundquist, sensitive to boundary
- Highlights difficulty/uncertainty in reconstructing from in situ



Image modified from <u>mit.edu</u>

Φ

- Majority of studies stop before rigorous in situ comparison
  - Möstl+ 2015 glancing blow
  - Patsourakos+ 2016 complicated case, apply circular flux rope but results vary wildly with chosen boundary
  - Temmer+ 2017 apply Lundquist, sensitive to boundary
- Highlights difficulty/uncertainty in reconstructing from in situ





- Majority of studies stop before rigorous in situ comparison
  - Möstl+ 2015 glancing blow
  - Patsourakos+ 2016 complicated case, apply circular flux rope but results vary wildly with chosen boundary
  - Temmer+ 2017 apply Lundquist, sensitive to boundary
- Highlights difficulty/uncertainty in reconstructing from in situ





- Majority of studies stop before rigorous in situ comparison
  - Möstl+ 2015 glancing blow
  - Patsourakos+ 2016 complicated case, apply circular flux rope but results vary wildly with chosen boundary

BX

Φ

- Temmer+ 2017 apply Lundquist, sensitive to boundary
- Highlights difficulty/uncertainty in reconstructing from in situ



- Rather than reconstructing, use information from corona to forward model
  - Routinely done for arrival time

- Rather than reconstructing, use information from corona to forward model
  - Routinely done for arrival time
- What do we need?
  - CME position, orientation, size, shape, flux rope model

- Rather than reconstructing, use information from corona to forward model
  - Routinely done for arrival time
- What do we need?
  - CME position, orientation, size, shape, flux rope model
- Can measure most values in corona, with some uncertainty, then propagate to 1 AU

- Rather than reconstructing, use information from corona to forward model
  - Routinely done for arrival time
- What do we need?
  - CME position, orientation, size, shape, flux rope model
- Can measure most values in corona, with some uncertainty, then propagate to 1 AU
- Highly scalable in level of complexity for each parameter
  - i.e. 2D vs. 3D, constant with distance, self-similar...

## BzForecast (Savani+ 2015)

Measure a CME's location, determine a satellite's relative location, apply simple flux rope model



- GCS fits to get position/orientation, angular width
- Cross-sectional width determined by statistical properties of CMEs
- Speed from observations/1 AU predictions
- Lundquist force-free flux rope model
  - Bothmer-Schwenn orientation
  - Strength from WSA-ENLIL+Cone
- Calculate Kp as well

## FRi3D (Isavnin+ 2016)

- GCS fits to start/for comparison
- Much more flexible shape than BzForecast
  - Can add flattening, pancaking, and skewing
- Speed from avg. observed
- Lundquist flux rope
- Perform independent *fits* to coronal and in situ
  - Hint at future forward modeling using early fits (coronal, HI, in situ) to drive later predictions



#### Accuracy v. Usability

As models become more complex they can better reproduce the observations but it becomes harder to accurately determine all their free parameters



#### Accuracy v. Usability

As models become more complex they can better reproduce the observations but it becomes harder to accurately determine all their free parameters



#### Accuracy v. Usability

As models become more complex they can better reproduce the observations but it becomes harder to accurately determine all their free parameters



FIDO is part of a suite of models designed to answer IF, WHEN, and HOW and use the uncertainty in input parameters to determine the likelihood of predictions









# Forecasting a CME's Altered Trajectory

- Simple analytic model for CME deflection and rotation from JxB of external solar background (Kay+2015 - 3D version)
  - Rigid torus shape
  - Only external forces
  - Highly computationally efficient
- CME expansion and radial propagation from empirical models constrained by observations



## ForeCAT Results

- Reproduces global trends in CME deflection/rotation
  - Deflection away from CH toward HCS
  - More massive/faster deflect less
- Reproduce specific observed cases (e.g. Kay+2017a, Capannolo+2017)
  - Compare GCS
     reconstructions with
     ForeCAT results



# ForeCAT In situ Data Observer

- 1. Take ForeCAT results for latitude, longitude, and tilt
- 2. Pass torus over spacecraft to get distance from torus axis
- 3. Apply simple flux rope model
- Aiming for ~hourly averages
- Total magnitude B<sub>0</sub> free parameter/automatically scaled

code available github.com/ckay314/FIDO



## FIDO Results

 ForeCAT yields 7° latitudinal deflection, 2° longitudinal deflection, and 18° rotation

- Compare ACE data with FIDO using ForeCAT and undeflected results (initial position)
  - Undeflected does not impact!
- Simulate 150 random cases with lat/lon/tilt that differ from the deflected ForeCAT result by less than  $\pm 5^{\circ}/10^{\circ}/10^{\circ}$



Figure from Kay+ (2017b)

## FIDO Results

 ForeCAT yields 7° latitudinal deflection, 2° longitudinal deflection, and 18° rotation

- Compare ACE data with FIDO using ForeCAT and undeflected results (initial position)
  - Undeflected does not impact!
- Simulate 150 random cases with lat/lon/tilt that differ from the deflected ForeCAT result by less than  $\pm 5^{\circ}/10^{\circ}/10^{\circ}$



Figure from Kay+ (2017b)

## FIDO Results

 ForeCAT yields 7° latitudinal deflection, 2° longitudinal deflection, and 18° rotation

- Compare ACE data with FIDO using ForeCAT and undeflected results (initial position)
  - Undeflected does not impact!
- Simulate 150 random cases with lat/lon/tilt that differ from the deflected ForeCAT result by less than  $\pm 5^{\circ}/10^{\circ}/10^{\circ}$



Figure from Kay+ (2017b)

## 45 CMEs Study

- Set of 45 CMEs with STEREO observations and identified ICME counterparts (Richardson+Cane ICME list)
- 1. Identify precise source location using SDO and HMI magnetogram
- 2. Fit GCS to observations from both STEREO coronagraphs
- 3. Simulate the coronal behavior with ForeCAT
- 4. Compare the FIDO results with ACE and Wind data
  - FIDO driven by both ForeCAT and GCS position/orientation
  - FIDO best fits to in situ observations → difference between our ability to determine FIDO inputs vs. limitations of a simple model

#### • 24 May 2010 CME

#### SDO 193 Å

Helioseismic and Magnetic Imager

SDO/AIA- 193 20100524\_134532

SD0/HMI Magnetogram: 20100524\_13450

Magnetic field derived from difference b velocities in observations in two different circul

Images from Kay et al. (2017c)

• 24 May 2010 CME



#### Running difference of white-light/visual observations 1.3-4 solar radii

• 24 May 2010 CME



#### Running difference of white-light/visual observations 2-15 solar radii

#### • 24 May 2010 CME



• 24 May 2010 CME



## In Situ Quality of Fit



- First rigorous metric defining the quality of fit to in situ observations
- Comparison of vector magnitude of average hourly error in each component with total magnetic field strength
- Scores range between 0 (best) and 2 (worst)
  - 1 ~ correct sign and magnitude within factor of two

#### In Situ Score Summary

- ForeCAT driven results tend to outperform GCS by ~0.1
  - Average score 0.7 for ForeCAT-driven results
  - Ranges between 0.2 and 1.05
  - Do have few cases where GCS is better

- Best fits tend to outperform ForeCAT-driven by ~0.1
  - Some room for improvement in input parameters, but fundamental limit based on physics include in model

#### **Ensemble Project**

- Six CMEs selected from previous study
  - Range of deflections and rotations
- Simulate 100 CMEs with small range in initial latitude, longitude, and tilt in ForeCAT (2°/2°/10°)
  - All other parameters held constant
- Use ForeCAT results to drive FIDO and ANTEATR



#### **Example Case - Coronal Behavior**

- 28 September 2012 CME
- Compare observations with "seed" case
  - Deflects 7° N and 24° E
  - Rotates 1.5°



GCS reconstructions Ensemble Seed Core Full Range

#### **Example Case - Coronal Behavior**

- 28 September 2012 CME
- Compare observations with "seed" case
  - Deflects 7° N and 24° E
  - Rotates 1.5°
- Range of core and full ensemble
  - Lat def variation ~half of total motion
  - Lon def variation small
  - Ensemble consistent with no rotation



GCS reconstructions Ensemble Seed

Core Full Range

#### Example Case - Impact Percentage

- Projection of CME torus shape onto solar surface
- Determine percentage of ensemble members that would impact based on latitude and longitude
- Earth impact skims along cross-sectional edge near CME nose
  - 86/100 expect to impact
  - Sensitive to width



Initial LocationEarth Location

#### **Example Case - In Situ Profiles**

- Use final lat/lon/tilt from each ensemble member
  - Scale to match observed average magnitude and duration → focus on change in profile
- "Core" typically matches obs.
- Small variations in By and Bz
- Full range of B<sub>x</sub> shows profiles with both polarities



#### Other Cases



 Same magnitude of uncertainty in initial parameter leads to variety of coronal behavior

- Uncertainty not uniform between lat/lon/tilt or B<sub>x</sub>/B<sub>y</sub>/B<sub>z</sub>
- Larger coronal uncertainty → larger in situ uncertainty

#### ANTEATR Model Another Type of Ensemble Arrival Time Results



- Radially propagate ForeCAT CME from ~20 Rs to near 1 AU
- Drag from background solar wind

 $F_{D} = -C_{D} A \rho_{SW} (V_{CME} - V_{SW}) |V_{CME} - V_{SW}|$ 

- Simple solar wind model
  - v constant, ρ falls as R<sup>2</sup>
- Add "in CME" check from FIDO once near 1 AU
  - Determine both transit time and velocity at contact

 CME shape/location more complex (3D) than most other models but drag/background less complex (1D)

#### **Arrival Time Results**



- One CME has obs. coronal v (CDAW) < transit time v</li>
- Average error in median predicted value only 3 hours
- Average range of 11.3 hours
- Average error in velocity of 15 km/s

## Deriving Sensitivity

- Want to quantify how accurately CME position must be known for accurate arrival times
  - Determine change in CME position that corresponds to change of six hours (~average best-case error in field)
- Rate varies from case to case (0.5° to 19°)
  - Less sensitive near CME nose
- On average, 6 hours corresponds to about 8°
  - Very limited sample, not entirely linear,
     → order of magnitude estimate!



#### Summary

- Big picture studies can provide more insight than simply considering a small portion of a CME's evolution
  - Combination of distances and observations + modeling
- Forward modeling can yield useful information about in situ magnetic field and arrival time
- Uncertainty in initial parameters can have large effects on results
  - Shown for model-driven forward modeling, certainly holds for (GCS) reconstruction-driven results
- In the future, using distribution of ensemble results will allow for assigning probability to predictions