XVIth Hvar Astrophysical Colloquium International Study of Earth-affecting Solar Transients, 24-28 September 2018, Hvar, Croatia

DYNAMIC PROPERTIES OF PROMINENCE ERUPTIONS

OBSERVED BY AIA AND LASCO

Ts.Tsvetkov^[1], N. Petrov^[1], R. Miteva^[2]

[1] Institute of Astronomy and National Astronomical Observatory, Bulgarian Academy of Sciences, Bulgaria
[2] Space Research and Technology Institute, Bulgarian Academy of Sciences, Bulgaria

OUTLINE

Prominences

- Eruption types
- Environment
- Methods of measurements
- Velocity variations
 - AIA/SDO
 - LASCO/SOHO
 - Other factors impact
 - Related phenomena impact
- Conclusions & Future plans

The study is supported by:

- National Science Fund of Bulgaria: Contract № ДНТС/Русия 01/6 (23-Jun-2017)
- joint project of cooperation between the IANAO, BAS and the Department of Astronomy, Faculty of Mathematics, University of Belgrade, Serbia, P-22/04.07.2017

PROMINENCES ERUPTION TYPES

*According to the filament mass and structure.

**According to the behaviour of prominence body.

Gilbert, H.R., Alexander, D., Liu, R.: 2007, *Sol. Phys.* **245**, 287. McCauley, P.I., Su, Y., Schanche, N., et al.: 2015, *Sol. Phys.* **290**, 6.

PROMINENCES ENVIRONMENT

- Topology of prominence environment:
 - Helmet streamers:
 - Typical locations: $\Theta \gtrsim 50^{\circ}$
 - Typical size: $d \sim 300\ 000\ km\ \&\ d < 1R_{\odot}$
 - Coronal cavities darker and less denser inner part
 - Coronal voids beam-like structures
 - Typical size: $d < 3R_{\odot}$
 - Typical lifetime: t < 4h

Engvold, O.: 1989, in E. R. Priest (ed.), *Dynamics and Structure of Quiescent Solar Prominences*, Kluwer Acad. Publ., 47. MacQueen, R. M., Sime, D. G. and Picat, J.-P.: 1983, Sol. Phys. **83**, 103.

MacQueen et al., 1983

DATA PROCESSING

- AIA/SDO data
- IDL-based SolarSoftware procedure

Distance between the top of the EP loop and solar centre Solar radii

Height of the EP above solar limb

DATA PROCESSING

VELOCITY VARIATIONS AIA/SDO

- Vertical fluctuations of EP plasma
- Observed in kinematic curves of EPs

VELOCITY VARIATIONS AIA/SDO

List of >40 EPs

VELOCITY VARIATIONS LASCO/SOHO

- No variations in LASCO FOV
- Higher cadence (~15 min)
- Higher altitudes

SOHO LASCO C2 27-Feb-2013 05:11:56.783 UT

OTHER FACTORS IMPACT ERUPTION TYPE

Time [min]

460 *GIF animation 400 1000] *GIF animation 2011/06/06 2012/07/28 1000] × , ₽ ₽ * Ē Ē 300 300 Ē limb , ^a[¢] the the Height above Height above 200 200 100 100 100 200 0 300 0 100 200 300 400 500 600 Time [mìn] Time [min] 100 400 *GIF animation ≖ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ ↓ *GIF animation 2010/09/30 2016/07/29 1000] Height above the limb [km * 1000] 80 × 300 limb [km ₹↓↓∞±∞↓ Į 60 ₹ ₹ the 40 Height above 20 0 50 150 50 100 0 100 150 200 250 300 0

Symmetric

Asymmetric

Time [min]

OTHER FACTORS IMPACT ERUPTION TYPE

OTHER FACTORS IMPACT ENVIRONMENT – CORONAL CAVITIES

- 211 Å channel image differences from the moments between activation and eruptive phase
- 40% association rate between EPs and CCs (Gopalswamy, 2006) / line-of-sight effects the cavity is occluded by foreground arcade emission (Gibson et al., 2010)

Gopalswamy, N., 2006. JApA **27**, 243. Gibson, S.E., Kucera, T.A., Rastawicki, D., et al., 2010. APJ (Acta Pathol. Jpn.) **724** (2),1133.

RELATED PHENOMENA IMPACT ACTIVE REGIONS

RELATED PHENOMENA IMPACT CMEs

Associated CME

No associated CME

C2: 2011/06/06 08:43 AIA 193: 06/06 08:44 C2: 2011/06/06 09:13 AIA 193: 06/06 09:14

RELATED PHENOMENA IMPACT SEP-PRODUCTIVITY

SEP-related EP

Not SEP-related EP

RELATED PHENOMENA IMPACT SEP-PRODUCTIVITY

EP-related SEPs Energy Spectra

CONCLUSIONS

FUTURE DEVELOPMENT

- Velocity disturbances during prominence eruptions
- No influence from:
 - Eruption type (symmetric/assymetric)
 - Full/partial/confined eruption
 - Nearby active regions/coronal cavities
 - Solar cycle
- No influence on:
 - Associated CMEs
 - EP-related SEP events
- Specific behaviour from event to event

- Modelling prominence environment
- Structure of prominence/coronal cavity system

This study is part of the Bulgarian-Russian project:

The origin of solar energetic particles: solar flares vs. coronal mass ejections

Ŀ	•••
I	https://

http://newserver.stil.bas.bg/SEPorigin

SEPorigin

THANK YOU!

tstsvetkov@astro.bas.bg