Solar Energetic Particles: Origin, Acceleration and Transport

Christina M.S. Cohen Caltech

Evolving Heliophysics System Observatory

• How do we connect this...

... to this?

SEP events are extremely variable Time profiles

\cdot SEP events are extremely variable

- \cdot Time profiles
- · Spectra

\cdot SEP events are extremely variable

- \cdot Time profiles
- Spectra
- Composition

- \cdot SEP events are extremely variable
 - \cdot Time profiles
 - Spectra
 - Composition
- All the characteristics are impacted by
 - Origin
 - Acceleration
 - Transport
- We've learned a lot but there *remains a lot to learn*

Solar Wind & SEP have different composition

Mewaldt et al. 2001

Solar Wind & SEP have different composition

Solar Wind & SEP have different composition
³He/⁴He especially (SW~ 5x10⁻⁴)

- Solar Wind & SEP have different composition
 - \cdot ³He/⁴He especially (SW~ 5x10⁻⁴)

SEPs systematically related ^{2.0} to upstream material

- Solar Wind & SEP have different composition
 - \cdot ³He/⁴He especially
- SEPs systematically related to upstream material
- Seed population is suprathermals What are its characteristics Seed population is

 - How does it vary?

'Flare' processes
Turbulence stochastic

- · 'Flare' processes
 - Turbulence stochastic
 - Magnetic islands
 - · Conditions in which this is occurring?
 - Heating of 3 He?

- · CME-driven shocks
 - \cdot Orientation of the shock

- · CME-driven shocks
 - \cdot Orientation of the shock
 - \cdot Spectra

- · CME-driven shocks
 - \cdot Orientation of the shock
 - Spectra
- Composition 01:32:30 01:35:00 01:37:30 PFSS **MHD** 1.5 0.5 2.5 3 0 1 3.5 2 M_{FM}
- Where exactly?
 - Nose?
 - Flanks?

- · CME-driven shocks
 - $\boldsymbol{\cdot}$ Orientation of the shock
 - Spectra
 - Composition

- Where exactly?
 - Nose?
 - Flanks?
- · Conditions?
 - Seed population

- · CME-driven shocks
 - \cdot Orientation of the shock
 - Spectra

- Where exactly?
 - Nose?
 - Flanks?
- · Conditions?
 - \cdot Seed population
 - Magnetic connection
 - · IPM

\cdot Governed by rigidity

Mason et al. 2012

Gaussian Width (°)

- · Governed by rigidity
- But not for longitude?
 - \cdot No clear Q/M trend

Normalized Width

- · Governed by rigidity
- But not for longitude?
 - \cdot No clear Q/M trend

Gaussian Width (°)

- · Governed by rigidity
- But not for longitude?
 - \cdot No clear Q/M trend
 - · Clear E trend

Normalized Width

- · Governed by rigidity
- But not for longitude?
 - \cdot No clear Q/M trend
 - · Clear E trend
 - Narrower at higher E

- \cdot Governed by rigidity
- But not for longitude?
 - \cdot No clear Q/M trend
 - Clear E trend
 - Narrower at higher E
- And what about this?

- \cdot Governed by rigi
- \cdot But not for long
 - \cdot No clear Q/M tre
 - · Clear E trend
 - Narrower at higher E
- And what about this?
- And this?

		STEREO-B	Earth
	Heliocentric	1.085968	0.992181
	Semidiameter	883.661	967.190
	HCI longitude	222.157	324.503
	HCI latitude	4.699	4.224
is	Carrington longitude	72.894	175.240
	Carrington rotation number	2116.798	2116.513
	Heliographic (HEEQ) longitude	-102.346	-0.000
	Heliographic (HEEQ) latitude	4.699	4.224
	HAE longitude	298.135	40.052
	Earth Ecliptic (HEE) longitude	-101.916	-0.000
	Earth Ecliptic (HEE) latitude	-0.183	0.000
	Roll from ecliptic north	0.039	

What We Know & Don't

- \cdot Origin is the suprathermals
 - \cdot Composition, spectrum, variability
- Acceleration is mostly by CME-driven shocks
 - \cdot Location on the shock, orientation
 - \cdot Seed population
 - Magnetic connection, IPM conditions
- \cdot Transport is governed by rigidity

What We Know & Don't

- \cdot Origin is the suprathermals
 - Composition, spectrum, variability
- Acceleration is mostly by CME-driven shocks
 - \cdot Location on the shock, orientation
 - \cdot Seed population
 - Magnetic connection, IPM conditions
- Transport is governed by rigidity complicated
 - Dependence on energy
 - · Longitudinal distribution
- · Parker Solar Probe & Solar Orbiter will help

There will be new surprises

