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Understand the origin, propagation and evolution 
of solar transients through the space between 
the Sun and the Earth, and develop the 
prediction capability of space weather 

Goal of ISEST
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ISEST - 2013
June 17-20, 2013, Hvar, Croatia



ISEST - 2015
Oct. 26-30, Mexico City, Mexico



ISEST 2017
Sep. 18 - 22, Jeju, South Korea



ISEST Mini-Workshops

June 12, 2015
Hefei, China

August 18, 2016
Beijing, China



ISEST Online Portal
ISEST Portal (Wiki based):  

• Data repository from observations and analysis 
• Discussions and comments 
• User registration 

      http://solar.gmu.edu/heliophysics/ 

Acknowledge: Phil Hess 

http://solar.gmu.edu/heliophysics/


MiniMax24 Portal
Daily updates of any relevant solar events  

(https://igam02ws.uni-graz.at/mediawiki/)  

Acknowledge:  Manuela Temmer and the team 
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Solar Physics 
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• 10 rejected by reviewers 

or editors 
• 34 papers accepted for 

publication 

2018 
ISBN-13: 978-9402415698 
ISBN-10: 9402415696
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Sun-Earth connection has 
never been so clear! 

Thanks to STEREO!

(Credit: NASA )  

(Credit: NASA and Deforest)   



CME Global Kinematic Evolution



Global Kinematic Evolution:
A four-phase scenario

near 
surface
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inner 
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outer 
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m/s2
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impulsive 
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residual 
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Propagation 
phase



•07:12 14:50 UT: Onset of Precursor Phase                     - 1 hr 20 min 
•07/12 16:10 UT: Onset of Impulsive Phase                        0 hr 0 min 
•07/12 16:49 UT: Flare peak (X1.4, S17W08, AR11520)     0 hr 39 min 
•07/12 16:48 UT: CME first appearing in C2                        0 hr 38 min 
•07/12 18:54 UT: CME at 20 Rs                                           2 hr 44 min 
•07/13 00:49 UT: CME at 50 Rs                                           8 hr 38 min 
•07/13 06:49 UT: CME at 80 Rs                                         15 hr       
•07/14 17:00 UT: Shock arrival at 1 AU                              49 hr 
•07/15 06:00 UT: Magnetic Cloud arrival at 1 AU               62 hr 
•07/15 19:00 UT: Peak time of Dst (-127 nT)                     75 hr 
•07/17 14:00 UT: Magnetic Cloud end at 1 AU                 118 hr

2012 July 12 - 14 STE event (Dudik et al. 2014; Cheng et al. 2014; Moestl et al. 
2014; Hess & Zhang 2014; Shen et al. 2014; Hu et al. 2016)

Sun-to-Earth Event: An Example 

Colorado



Phase 1: Precursor Phase
2012/07/12 

Event
GOES X-ray

SDO AIA
Coronal Image

Transition 
Region Image

SDO/HMI 
Magnetogram



EUV hot channel: the signature of magnetic flux rope

Hot Temperature (10 MK) Cool Temperature (~ 1 MK) 
(Zhang, Cheng & Ding, Nature Communications, 2012) 
Also see (Cheng et al., ApJ  Lett., 2011)

Morphology in Precursor Phase

SDO AIA 131 Å SDO AIA 171 Å
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Pre-eruption Morphology

The sigmoid in 2-D is of an M-shape in 3-D
(Zhou et al. 2016)     



• Slow rise motion of the erupting structure (Zhang et 
al. 2001; Sterling & Moore 2005) 

• Weak electromagnetic emission: X-ray, EUV 

• Weak pre-flare activity (Chifor et al. 2007) 

• Appearance of hot channels in EUV (Zhang et al. 
2012; Cheng et al. 2013) 

• A magnetic flux rope has formed prior to the 
precursor phase 

Phase 1: Precursor Phase

The precursor phase is least understood



(Zhang et al. 2001)     (Temmer et al. 2008)     

Phase 2: Impulsive Phase



(Cheng et al. In 
preparation )     

Phase 2: Impulsive Phase
Nearly synchronized temporal relation between 

eruption (CME) and EM emission (flare) 

V(t)=V0 +at +bet/τ



• Fast and impulsive acceleration (up to 10 km/s2) 
• Flare hard X-ray emission 
• Flare EM enhancement in all wavelength 
• Flare footpoint ribbon separation 
• Coronal dimming 
• Coronal waves 

• Nearly synchronous evolution of CMEs and flares 
• A hybrid process of involving both ideal MHD 

instability (Torus Instability, Kliem & Torok 2006) 
and non-ideal MHD process (Magnetic 
Reconnection, CSHKP and many variants) 

• Also a mutual feeding process between Torus 
Instability and Magnetic Reconnection

Phase 2: Impulsive Phase
This is it! The main phase of energy release



(Zhang & Dere  2006) 
Based on SOHO     

Phase 3: Residual Phase

Based on STEREO    

• Add the “residual phase” into the original three 
phase scenario in the setting of global evolution  

• It is a transition phase in which Lorentz force and 
drag force both are important



Phase 3: Residual Phase
• “Residual Acceleration” is originally proposed in 

Chen & Krall (2003). It differs from the main 
acceleration in their model, in which Lorentz self-
force has decreased and the drag force of solar 
wind starts to dominate 

• Zhang et al (2006) made a statistical study of main 
and residual acceleration 

• It is also named as “post-impulsive-phase 
acceleration” in Cheng et al. (2010). 

• It is in time associated with the decay phase of long 
duration flares. 



Phase 3: Residual Phase

Main acceleration 
versus residual 
acceleration 
(Zhang & Dere  2006)    

Residual acceleration 
(Cheng et a.  2010)    



Phase 3: Residual Phase
Drag force 

dominates early 
(at ~ 4 Rs) 

Event: 2011/10/22

Drag force 
dominates later 
(at ~ 20 Rs) 

Event: 2011/01/24

(Sachdeva et al. 2017)   



Separation of Shock and Ejecta
Two fronts: 1. Ejecta front; 2. Shock front

STEREO

(Hess & Zhang 2014)



CME Morphology

(Illing & Hundhausen 1986)

Three-Part

1. Frontal 
Shell

2. Cavity

3. Core

SMM

(adapted from Vourlidas et al. 2013)

SOHO

Two-front 1. shock front

2. ejecta front

Three-part structure Two-front Three-part structure



Separation of Shock and Ejecta

(Credit: Kwong )  



Phase 4: Propagation Phase
• This is the “drag phase”, i.e., solar wind aerodynamic 

drag force dominates.  
• The acceleration profile is monotonic. 
• The acceleration magnitude is small (< 20 m/s2) 
• The velocity is asymptotically approaching solar 

wind speed
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Evolution can be largely 
modeled by the DBM 
model (e.g., Vrsnak et 
al. 2014; Hess & 
Zhang 2015; Zic et al. 
2015)



1. 11. Ejecta Front: GCS model  
2.2. Shock Front: spherical model

Propagation  
Direction 

Lat: S10º 
Lon: W01º

STEREO-A STEREO-B (Hess & Zhang 2014)

Phase 4: Propagation Phase



Phase 4: Propagation Phase

(Credit: Mostl)

Self-similar 
expansion
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Predict TOA (Time of Arrival) 
• Real time prediction based on beacon data: -12 hr to +12 hr for 

11 April 2010 event (Davis et al. 2011) 
• Real time prediction by NOAA SWPC with ENLIL+Cone model: 

MAE (mean absolute error) of 7.5 hr, RMS 8 hr (Millward et al. 
2013)  

• Prediction using GCS model and a combination of methods: 
MAE 8.1 hr, RMS 6.3 hr (Colaninno et al. 2013) 

• J-map of HI images, constant speed: MAE 6.1 hr, RMS 5.1 hr 
(Mostl et al. 2014) 

• ESA model using eastward CME: MAE 7.3 hrs, RMS 3.2 hr 
(Gopalswamy et al. 2013) 

• DBM with CME speed from cone model: MAE 14.8 hrs, RMS 
~14 hr; ENLIL similar errors  (Vrsnak et al. 2014)



Predict TOA (Time of Arrival) 
• Improved DBM model with GCS/spheroid measurement and 

geometry correction: MAE 1.5 hrs, RMS 0.8 hrs (Hess & Zhang 
2015) 

• NASA CCMC CME scoreboard of real time prediction 
(including 32 models): MAE10 hrs,  RMS 20 hrs (Riley et al. 
2018, in press) 

• CCMC WAS-ENLIL+Cone model: MAE 10.4 hrs (Wold et al. 
2018)



1.Separate the ejecta from the shock 
2.We use an improved theory: the distance-

dependent drag number in the drag-based model 
3.We consider the geometric correction: the off-Sun-

Earth-line angle of CME nose

Predict TOA (Time of Arrival) 
How can we achieve the mean absolute error (MAE) 

of only 1.5 hours?  (Hess & Zhang 2015)

Accurate prediction is possible, but need much 
improved stereoscopic measurement 



What affects TOA prediction? 
• In DBM models:  

1. Improved treatment of drag number 
2. Use true ambient solar wind speed 

Arrive time changes ~1 hr, when SW speed changes ~10 km/s, 
                                   ~5 hrs,                                              50 km/s

(Shen et al .2014)



What affects TOA prediction? 
• In MHD models:  

1. Initial CME density, 
which is event 
dependent (may vary 
from 1 to 8), but not 
the nominal value of 
4 as in current 
operational model 

• denser, arrive 
earlier 

2. Initial CME size: 
larger the CME 
angular width, the 
earlier the arrival 
time (Credit: Odstrcil)

See poster by Odstrcil et al



Predict Hit/Miss 

• NASA CCMC WAS-ENLIL+Cone model for the period 
March 2010 - December 2016 (Wold et al. 2018) 

Hits: 121;      False Alarms: 180;       Misses:   106 
 

This is currently problematic!

• Do not mix the ejecta and the shock sheath. This is 
important for obtaining correct propagation direction and 
size of the CME ejecta



Predict Geo-effectiveness 
It is currently challenging, the so-called “Bz” issue

• The prediction might be possible, given that the whole 
Sun-Earth connection is controlled by a single magnetic 
flux rope 

• The magnetic flux rope largely undergoes a self-similar 
expansion 

• However, a magnetic flux rope may deflect from its original 
radial direction 

• The axis of an erupting magnetic flux rope may rotate as it 
rises . 

• Do not know how much magnetic flux is contained in an 
erupting magnetic flux rope

Refer to Group 6. 



Conclusions (1) 
• The global Sun-to-Earth (planets) evolution of 

CMEs can be divided into four phases: (1) 
precursor phase, (2) impulsive phase, (3) 
residual phase, and (4) propagation phase. 

• Each phase has its unique acceleration 
profile, controlled by different dominant forces 
acting on the erupting structure. 

• The global evolution is organized by a single 
magnetic flux rope. 

•



Conclusions (2)
• Predicting TOA of CMEs has improved 

significantly in the last decade (MAE = 10 hrs) 

• Predicting HIT/MISS of CMEs is still 
problematic ( ~ 1 out 3). 

• Predicting geo-effectiveness of CMEs remains 
challenging (the Bz issue)



The End



Backup



“my wish list”
• Multiple-point observations from space to 

achieve the global 3D measurement, i.e, L1+ 
L4+L5 missions, or a series of missions 
around the eclipse 

• Direct measurement of magnetic field in the 
corona, in addition to photospheric and 
chromospheric measurements 

• Develop Sun-to-Earth numerical simulation 
with improved ambient solar wind model 

• Data assimilation approach, integrating 
observation and simulation in real time 

• Improve theoretical understanding



Correction to the drag model
• The drag number 𝚼 is not constant 
• The drag coefficient Cd is a constant (=1.35) 
• One un-constrained free parameter: initial density 

ratio 
a(t) = −γ (V (t)−Vsw )V (t)−Vsw

γ = CdAρsw

M +Mv

= Cd

r( ρ
ρsw

+ 1
2

)

Assuming:  ρ = ρ0
r0
3

r3
;ρsw = ρsw0

R0
3

R3

γ = Cd

ρ0
ρsw0

κR0 +
κR
2



Correction to the geometry
• The distances to the Sun of the nose is different 

from that of the interception point  
• The shape of CME ejecta and shock is not 

exactly a GCS

Nose

Earth

hfinal = 0.65hnose + 0.35hEarth


