

XVIth Hvar Astrophysical Colloquium International Study of Earth-affecting Solar Transients ISEST 2018 Workshop 24 - 28 September 2018, Hvar, Croatia

Features of spectral-polarization dynamics of flare active regions by microwave observations

Tatiana Kaltman, Vladimir Bogod, Anton Storozhenko

Russian Academy of Sciences Special Astrophysical Observatory Radio astronomical methods are important tools for the study of the solar atmosphere because they provide the data about the parameters of active plasma over a wide range of heights that are difficult to probe using other methods.

The radio emission of the chromosphere can be observed at mm-wave frequencies, whereas the transition region between the chromosphere and the corona and the lower corona radiate efficiently at centimeter- and decimeter-wave frequencies.

Electron density and temperature model of the chromosphere (Fontenla et al. 1990; Model FAL-C) and lower corona (Gabriel, 1976).

PARAMETERS	range	resolution					
Spectral	0.76-18 GHz	1%					
Spatial		~15 arcsec x 17 arcmin at 18GHz					
Temporal	7-11UT	4 min cadence, 61 scans					
Other parameters:		*					
Circular polarization measurement	n accuracy of	0.1%					
Flux sensitivity		0.01 s.f.u.					

PARAMETERS	range	resolution					
Spectral	0.76-18 GHz	1%					
Spatial		~15 arcsec x 17 arcmin at 18GHz					
Temporal	7-11 UT	4 min cadence, 61 scans					
Other parameters:							
Circular polarization ac measurement	curacy of	0.1%					
Flux sensitivity		0.01 s.f.u.					

The RATAN-600 archive containing solar data starting from 1997

is available on site <u>http://www.spbf.sao.ru</u>

9-13 UT in the range from 1.67 cm up to 32 cm with left and right circular polarization

The composition of the active regions magnetosphere: *Plage* - increased brightness over the chromospheric flocculus *Spot component* - over local areas of strong magnetic fields. which in visible light is darker than the surrounding photosphere (spots), and in radio emission - bright polarized sources

Halo - arcade of coronal loops

RATAN-600: I(solid), V(dashed) 15.7 GHz (black), 9.75 GHz (white), 6.80 GHz (green)

171A

The study of the physical nature of solar active region magnetospheres by the spectrum of microwave emission

Magnetosphere with the Plage component only

SDO 1700 A, RATAN-600 7.1 GHz

171 A, 4.4 GHz

Changes in microwave emission of AR 12497 before and after flare M1.0 (12.02. 2016)

Рис. 2

SOHO/LASCO HALO CME CATALOG

RATAN-600 CATALOG

https://cdaw.gsfc.nasa.gov/CME_list/HALO/

First C2 Appear Date Ti	2 ance me [UT]	Apparent Speed [km.s]	MPA [deg]	Source Locationd	X-ray Importance	Flare onset [UT]	number of records	period between records [min]	presence of changes	frequency range of changes [GHz]	period before flare [hour]	gr limit
17.05.2013	<u>9:12:10</u>	<u>1345</u>	50	N12E57	M3.2	8:43	31	7:30	yes	4.2-11.7	0:30	11.7 GHz
22.05.2013	13:25:50	<u>1466</u>	287	N15W70	M5.0	13:08	31	8:50	yes	4.2-15.3	5:30	15.5 GHz
16.02.2014	10:00:05	<u>634</u>	227	S11E01	M1.1	9:20	31	8:10	yes	9.2-12.4	1:30	13.7 GHz
02.04.2014	<u>13:36:20</u>	<u>1471</u>	60	N11E53	M6.5	13:18	27	9:00	No	-	-	17.5 GHz
18.04.2014	<u>13:25:51</u>	<u>1203</u>	238	S20W34	M7.3	12:31	31	8:10	yes	4.0-12.0	1:00	17.5 GHz
04.06.2014	12:48:05	<u>467</u>	160	S29E40		9:12	5	52:30	yes	4.9-10.6	1:20-1:50	16.4 GHz
10.06.2014	13:30:23	<u>1469</u>	156	S17E82	X1.5	12:36	3	9:00	yes	10.0-14.0	1:00	17.2 GHz
22.08.2014	11:12:05	<u>600</u>	359	N12E01	C2.2	10:13	5	49:10	yes	10.0-16.0	0:10-3:00	16.0 GHz
24.08.2014	12:36:05	<u>551</u>	100	S07E75	M5.9	12:00	5	49:00	yes	4.0-10.0	1:00-4:00	15.6 GHz
21.12.2014	12:12:05	<u>669</u>	189	S14W25	M1.0	12:12	28	8:30	yes	10.8-16.5	4:00	17.5 GHz
25.06.2015	<u>8:36:05</u>	<u>1627</u>	330	N09W42	M7.9	8:02	31	8:00	No	-	-	17.5 GHz
16.12.2015	<u>9:36:04</u>	<u>579</u>	334	S13W04	C6.6	8:34	31	8:15	yes	4.7-15.6	2:00	17.5 GHz

 T=06:57:07 az=30.
 T=07:06:05 az=28.
 T=07:15:01 az=26.
 T=07:23:54 az=24.
 T=07:32:45 az=22.
 T=07:41:35 az=20.
 T=07:50:24 az=18.
 T=07:59:11 az=16.
 T=08:07:57 az=14.
 T=08:16:42 az=12.
 T=08:25:27 az=10.
 T=08:34:10 az=8.0
 T=08:42:54 az=6.0
 T=08:51:37 az=4.0
 T=09:00:20 az=2.0
 T=09:09:02 az=0.0
 T=09:17:45 az=-2.
 T=09:26:28 az=-4.
 T=09:35:11 az=-6.
 T=09:43:54 az=-8.
 T=09:52:38 az=-10
 T=10:01:22 az=-12
 T=10:10:08 az=-14
 T=10:18:54 az=-16
 T=10:27:41 az=-18
 T=10:36:29 az=-20
 T=10:45:19 az=-22
 T=10:54:11 az=-24
 T=11:03:04 az=-26
 T=11:12:00 az=-28
 T=11:20:58 az=-30

Quasi-periodic Pulsations in a Solar Microflare Nakariakov et al.

Astroph. J., V. 859, I. 2, article id. 154, 8 pp. 2018

SDO/AIA 171 Å

400

350

300

250

arcsec

SDO/AIA 1600 Å

400

350

300

250

arcsec

) B

The Sun centre has been shifted=21.64 arcsec (7pix, or 1.5sec).

Download the data in FITS format:		
Levell file (authorization required)	Level2 (auto treatment from the archive)	Level 2 (current work file)
20141022_125808_sun0.fits	20141022_125808_sun0_out.fits	/data/tmp/20141022sun0_113-

Tanaka-Enome big flares prediction criterion (Flux 3 cm >10 sfu, Flux 3c

Latest big flare prognosis for the next 3 days from the last observations day 20141022:

today NOAA ARs: 2187 2192 2193 2194

Time	az	NOAA AR	x pos	y pos	flux	flux	flux	flux	Pol	location	area	prognosis	spi	xl	x2
					3cm	3cm	10cm	10cm							
						corr		corr							
08:58:08	0	2187_2191	819	3.3	5.20	5.54	3.50	3.50	S	\$08W53	170	negative	0.00	699	934
08:58:08	0	2193_2190	340	2.6	3.60	3.75	3.50	3.50	Е	N04W18	80	negative	0.00	272	405
08:58:08	0	2192	-150	-6.3	47.10	59.17	41.60	41.60	S	S14E19	2410	positive	0.00	-315	99
WARNING! Big flare is probable within the next 3 days															

Check also the polarization configuration.

X-ray flares within 2014-10-22 and 2014-10-25

WEB-SITE OF THE FORECAST OF SOLAR ACTIVITY USING RATAN DATA

X-ray flares within 2014-10-22 and 2014-10-25

Date	Begin	Max	End	Loc	Xray class	Op	NOAA AR
2014.10.22	0116	0159	0228		M8.7		2192
2014.10.22	0511	0517	0521		M2.7		2192
2014.10.22	1402	1428	1450	S14E13	X1.6	2Ъ	2192
2014.10.22	1551	1557	1603		M1.4		0
2014.10.22	1652	1659	1703		C5.7		0
2014.10.23	0944	0950	0956	S16E03	M1.1	1f	2192
2014.10.24	0235	0243	0248	S20W02	C4.2	Sf	2192
2014.10.24	0356	0400	0402	S22W00	C3.6	Sf	2192
2014.10.24	0737	0748	0753		M4.0		2192
2014.10.24	2107	2141	2213	S16W21	X3.1	3Ъ	2192

Summary

- The RATAN-600 archive of daily solar observations starting from 1997 (9-13 UT in the range from 1.67 cm up to 32 cm with left and right circular polarization) is open for investigations.
- Several solar events based on regular observations with RATAN-600 radio telescope are presented.
- The spectral-polarization observations over a wide wavelength range reveal numerous intensity and polarization effects reflecting the characteristics of active regions at the pre-flare, flare and postflare stages.
- The frequency range covers the gyroresonance emission from all the active regions, corresponding to the magnetic field strengths found in the corona (up to 2500 G), and other emission mechanisms, being able to indicate the preflare state and monitor the solar flare activity.

THANK YOU FOR ATTENTION!

Salomon Trismosinus "Splendor Solis" around 1535