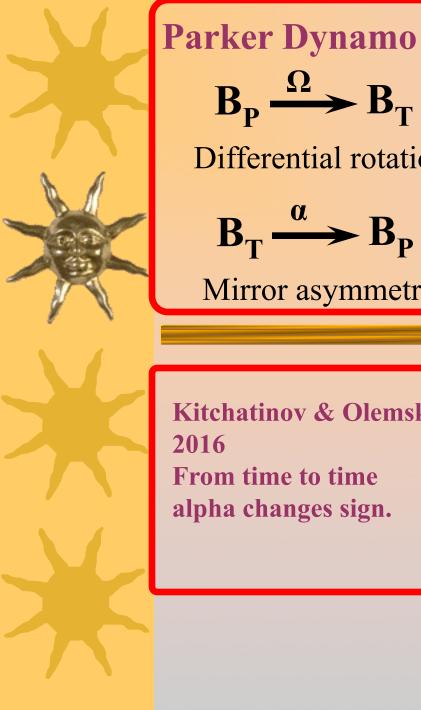
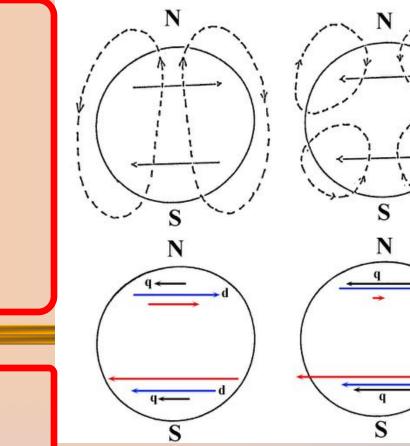
XVI HVAR Astrophysical Colloqium, ISEST 2018 Workshop, 24-28 September 2018 Hvar, Croatia

Can superflares occur on the Sun?

D.Sokoloff, Moscow University and IZMIRAN, Russia L.L.Kitchaonov, Irkutsk, Russia M.M.Kazova, Moscow, Russia D.Moss, Manchester, UK I.Usoskin, Oulu, Finland

Superflares


Kepler reveals flares with total energy substantially greater than 10³³ erg (to be compared with the highest energy, approximately 10³² erg, of any observed solar flares); however sometimes the reported energy is as large as 10³⁶ erg.



magnetic energy and

how to transform it in a superflare.

Dynamo deals with the first problem only.

2016 From time to time alpha changes sign.

Kitchatinov & Olemskoy

 $B_P \xrightarrow{\Omega} B_T$

Differential rotation

 $B_T \xrightarrow{\alpha} B_P$

Mirror asymmetry

Our suggestion:

Antisolar differential rotation

Something from dynamo studies

- Conventional dynamo based on differential rotation and mirror asymmetry can give cycles as well as growth and then saturation without oscillations.
- ***** Non-oscillatory solutions are kown for galaxies.
- * Non-oscillatory magnetic fields are much stronger rather oscillatory. Dynamo abilities are not spended to produce oscillations.

We verifyed it for simple modes.

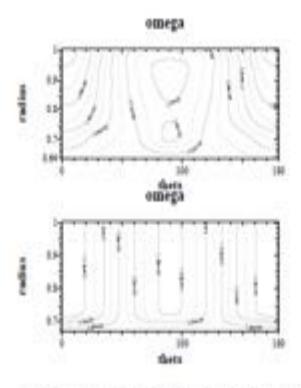
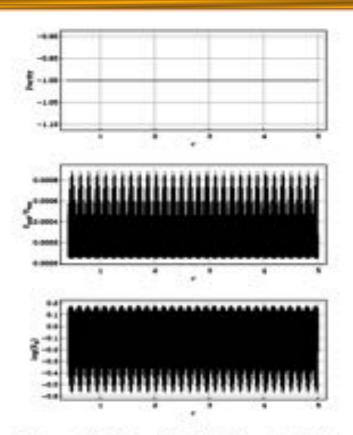
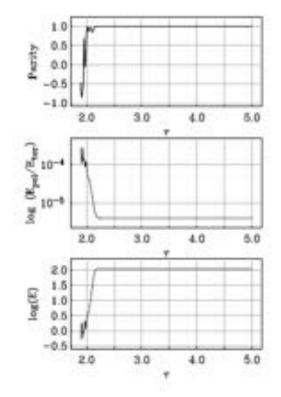
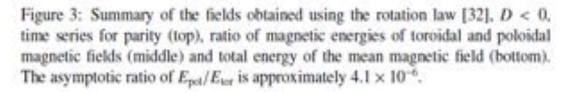


Figure 1: Stellar rotation curves: upper panel - SOHO-like rotation curve, lower panel - Jouve et al. (2008) rotation curve.

Oscillatory solutions:


Figure 2: Magnetic field for rotation law [32], D > 0, timeseries for parity (top), ratio of magnetic energies of toroidal and poloidal magnetic fields (middle) and total energy of the mean magnetic field (bottom).

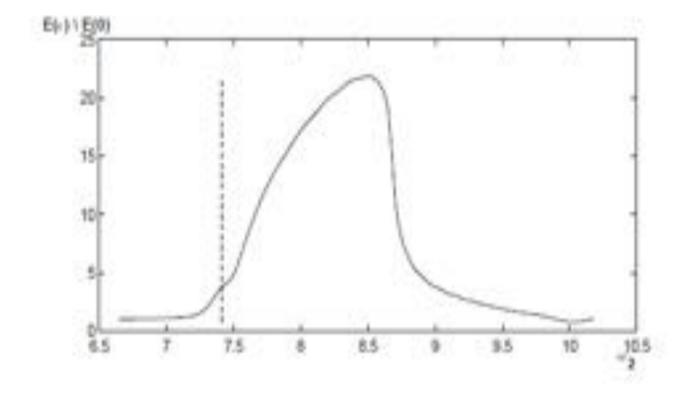
Non-oscillatory are indeed much

stronger.

For particular stars...

Table 1: Some solar-type stars with superflares with $E > 10^{35}$ erg, after [34]. T_{eff} is the effective temperature, g is the gravity in cm s⁻², P_{rot} is the rotation period.

KI, miller	Int. A.	1467	log F	N	Pag. 46	Company
and the factor of					Fines	a contract of the second s
136401	5061	450	10.06	215	tie	Binary routigite system [15], second differential rotation [34], confer than the Syst
8481574	. 5712	4.657	10.06	1	0.336	eclipsing binary
3050875	5645	1.001	19.00	1.1	13.05	ectioning history 1
12156549	. 5541	4.01	36.50	128	3.451	bioay", occitations in separate (37)
9635129	5140	4401	10.36	26	URNER	slataishid Asjana-type"
	1000	1.1.1.1.1	122		Salight	
611315	586	1.715	34.18	11	11612	outlation is oppifiant [7]
T330496	585	3.744	36.40	. 4	8.40	
87.36264	1254	1983	16.10	11.	3.50	sparsi-periodic patianone (30)
				5	and share the	e de Sa
1411/161	10.04	1 1 1 1 1	30.08	11	17.361	5p K3 V
					distances of ch	a idatem
5475645	5136	4.64	17.63	- 6	7.812	quad-particide patrations [37]
LTM RD. NY	3665	4.00	10.76	- 34	1.625	constantions in separation (21)
			-	. Vir	young fail to	haliy ilan
945,000	56.18	4.80	35.38	26	1.478	


¹Information concerning stellar variability is added from the SIMBAD database, provided by CDS, Strasbourg.

Case HK LAC

Giant HK Lac is superflaring
Antisolar differential rotation
α = 0.05 \pm 0.05
Olah et al., 2018.

