Identifying the Source Complexity of a Complex Ejecta

Arun K. Awasthi¹, Rui Liu¹*, Haimin Wang², Yuming Wang¹, Chenglong Shen¹

¹University of Science and Technology of China ²New Jersey Institute of Technology

ISEST 2018 workshop, Sep. 24 - 28, 2018, Hvar, Croatia

Enigma of complex ejecta

- Conventional thinking: most of CMEs are magnetic flux ropes
- Reality: only 1/3 of ICMEs are magnetic clouds
 - CME-CME Interaction
 - Glancing encounter with S/C
 - Complex source?

Magnetic Flux Rope: Introduction

- Definition
 - A bundle of magnetic field lines collectively winding around a common axis
- Implication
 - Similar magnetic connectivities within the rope?
 - A boundary separating twisted from untwisted field?
- Methods
 - Quantify magnetic connectivity
 - Quantify magnetic twist

Courtesy of V.S. Titov

Quantifying Magnetic Connectivity

- Field line mapping Π_{12} : $\mathbf{r}_1(x_1, y_1) \mapsto \mathbf{r}_2(x_2, y_2)$
- Jacobian associated with the mapping

$$D_{12} = \begin{bmatrix} \frac{\partial \mathbf{r}_2}{\partial \mathbf{r}_1} \end{bmatrix} = \begin{pmatrix} \frac{\partial x_2}{\partial x_1} & \frac{\partial x_2}{\partial y_2} \\ \frac{\partial y_2}{\partial x_1} & \frac{\partial y_2}{\partial y_1} \end{pmatrix} \equiv \begin{pmatrix} a & b \\ c & d \end{pmatrix}$$

• Squashing Factor Q (Titov et al. 2002, JGR)

$$Q \equiv \frac{a^2 + b^2 + c^2 + d^2}{|\det D|}$$

- Quasi-Separatrix Layers : Q ≫ 1
 Separatrix Surfaces: Q → ∞

Rapid change in magnetic connectivity

Quantifying Magnetic Twist

Liu et al. 2016, ApJ

Geometric Twist: # of turns of a curve winding about axis

$$T_g = \frac{1}{2\pi} \int_{x(s)} \hat{T}(s) \cdot \hat{V}(s) \times \frac{d\hat{V}(s)}{ds} ds$$

Twist of a Field Line: generalized from a cylindrical flux tube

$$T_{w} = \int_{y(s)} \frac{\mu J_{\parallel}}{4\pi |B|} ds = \int_{y(s)} \frac{(\nabla \times B) \cdot B}{4\pi B^{2}} ds$$

$$\lim_{\varepsilon \to 0} T_w(\varepsilon) = T_g - \int_{x(s)} \frac{c_3}{2\pi B} ds$$

$$\mathbb{S} \cdot \hat{V} = c_1 \hat{T} + c_2 \hat{V} + c_3 \hat{T} \cdot \hat{V}$$

S - symmetric part of the field gradient tensor $\partial B l \partial r$ $c_3 = 0$ at the axis in cylindrical symmetry

Combining Q and Tw

Liu et al. 2016, ApJ

- MFR criteria: a 3D region of enhanced twist $(|Tw| \ge 1)$ bounded by high-Q surfaces (QSLs)
- Axis criteria: |Tw| achieves extremum at the axis

CME and unexpectedly moderate geoeffect

Multi-Flux-Rope System

Braiding sub-flux-ropes

Seeking Evidence of Magnetic Reconnection

Braiding & Plasma Heating

- Braiding of multi-threads in 131Å
- Plasma heated up 20 MK in a C1.1 flare before M6.5

Reconnection outflow

log T (K)

log T (K)

- Bidirectional outflow in the form of blobs
- Blobs are multi-thermal with a 10 MK component

Nonthermal HXR electrons

- Preflare phase: significant nonthermal component (powerlaw index $\delta = 6.3$)
- Main phase: Essentially thermal (exponential)

Conclusion

Complex ejecta may inherit complexity from the source

• Time to start thinking about **internal structure and reconnection** if we are to understand CMEs and to predict their geoeffects.

Awasthi, Liu*, et al. 2018, ApJ