Progress Report of WG5 (and related) activities: The Bs Challenge

Spiros Patsourakos, University of Ioannina, Greece

ISEST 2018 WORKSHOP 24-28 September 2018, Hvar, Croatia

The Bs challenge: Statement of the WG (from ISEST description)

The presence of **southward** magnetic fields in ICMEs are the most important factor in producing **geomagnetic storms**.

WG5 aims to understand and reconstruct the possible flux rope magnetic structure of CMEs/ICMEs from observations and models. It also aims to predict the intensity and the duration of the Bs in ICMEs upon arriving at the Earth.

DIFFICULTIES

State of the Art

Radio diagnostics of CME coronal & IP magnetic field by Faraday rotation (e.g.,Bird et al. 1985; Jensen & Russel 2008, Liu+ 2007, Jensen+2010; Liu+ 2007; Bisi+ 2016; Kooi+ 2017) & gyrosynchrotron emission (e.g., Bastian+2001;Tun & Vourlidas 2013; Carley+2017) are difficult & rare

Advent of methods to infer the CME magnetic field in the corona/IP

Emergence of magnetized CME heliospheric propagation models for space-weather predictions (EUHFORIA, COIN-TVD, ENLIL, SUNSANOO); constraints by coronal CME b-field inferences

Sun-to-Earth CME simulations (AWSoM, MAS thermodynamic): genesis& propagation

Development of **statistical framework** to compare Bz-predictions with observations

Many Models of CME Magnetic Field Infererence

FIDO (Kay+2017; Kay&Gopalswamy 2017)

ForeCAT semi-analytical data-constrained model (Kay+2013,2014,2015)

magnetic forces acting on CMEs --> near-Sun CME deflection + rotation

LFF cylindrical model + flux conservation --> B CME @ 1 AU

FIDO (Kay+2017; Kay&Gopalswamy 2017)

Applied to 49 events

black ---> observations blue --> no deflection/rotation red ---> model

ballpark agreement

gray --> uncertainties 5 deg (lat); 10 deg (lon,tilt)

B sensitive to uncertainties of CME location/orientation
--> C. Kay talk
Uses in-situ observations @ 1 AU for near-Sun CME |B|

FRED (Gopalswamy+ 2017, 2018)

Calculate reconnected flux in post-eruption arcades + fit flux rope model to corresponding CMEs from LASCO observations of 54 CMEs

Apply constraints to cylindrical LFF model ---> **CME magnetic field at 10 Rs** (> ambient)

FRED: Coronal and IP attributes (Gopalswamy+ 2017,2018)

correlation btw near-Sun BCME + MC axial field

3DCORE (Mostl+2018)

- Stack 2D Gold-Hoyle sections to a 3D tapered torus & flux conservation
- drag-force model Vrsnak + 2013 --> kinematics
- applied to a case study
- Ballbark agreement + ToA

Uses in-situ observations @ Messenger to determine near-Sun CME |B|

H-CME (Patsourakos+2016)

For LFF cylindrical flux rope (Lundquist 1950) : Dasso, Mandrini, Demoulin et al. $2003 \rightarrow$

$$B_0 = \sqrt{\frac{2.405H_m}{4\pi LRJ}}$$

L, R \rightarrow CME length+ radius from GCS modeling of CMEs with STEREO (Thernisien et al 2009)

 $Hm \rightarrow from photospheric magnetic/flow obs & extrapolations (e.g., Valori et al. 2017); conserved (e.g., Berger 1985)$

Near-Sun CME magnetic field B₀

Extrapolation of coronal CME b-field to 1 AU Use a power-law of the radial distance r: $\alpha B \rightarrow [-2.7, -1.0]$ from Demoulin & Dasso 2009

 $B_0(r) = B_* (r/r_*)^{\alpha_B}$

αB is a free parameter used to match the in-situ observations

Parametric Studies of H-CME (Patsourakos& Georgoulis 2016,2017)

Generate 10⁴ synthetic CMEs by by taking random samples from the observed AR Hm (Tziotziou+ 2012) & CME geometrical parameter (Thernisien+2009;Bosman+ 2012) distributions

Determine near-Sun B* for the 10⁴ synthetic CMEs

Extrapolate CME b-field to 1 AU for different αB for the 10⁴ synthetic CMEs

Parametric Studies of H-CME (Patsourakos& Georgoulis 2016,2017)

LFF cylindrical model color --> extrapolated to 1 AU CME magnetic field

black+white ---> outside range of MC
observations (Lynch+2003; Lepping+ 2006)

region around αB ~-1.6 fits reproduces the bulk of MC observations

extension to various CME models (e.g., non-force-free, spheromac etc)

% of predicted values within the range of MC observations as a function of $\alpha_{_{\rm B}}$

robustness of models for specific $\alpha_{_{\!\rm B}}\text{-range}$ is used

H-CME application to 10 CMEs (Petroulea+2018)

ISEST event list 10 C-X class flares (Hess&Zhang 2017)

assess uncertainties in derived magnetic fields

x10 range in |B|; higher than ambient

Summary of CME b-field inference models (Vourlidas+2018)

Model	HELIO-XM	BFE	BZ4CAST	H-CME	FiDO	Fried	FRED	CORE3D
shape	torus	cylinder	cylinder	cylinder/torus/ <u>spheromac</u>	torus	torus	torus	torus
principle	hoop force	CME energetics	hemispheric <u>helicity</u> rule & region of influence	magnetic <u>helicity</u> conservation	force balance	flux conservation along 3D torus	reconnected flux	populate 3D torus with 2D magnetic sections
Near-Sun magnetic field	non-force-free	force-free	force-free	force-free/non-force-free	force-free	force-free	force-free	force-free
B near-Sun	Y	Y	CCMC <u>simul</u> of sheath	Y	N	N	Y	N (@ Messenger)
near-Sun deflections	N	Y	Y	Y	Y	Y	N	Y
IP propagation	radial	radial	radial	radial	radial	radial	radial	radial
B IP evolution	force-balance	flux conservation	CCMC simulation	power-law with varying <u>αB</u>	flux conservation	flux conservation	flux conservation	flux conservation
B vector	Y	N	Y	N	Y	Y	N	Y

HELIO-XM: Kunkel & Chen (2010); Roulliard & Lavarra (2017) BFE: Vourlidas et al. (2001); Vourlidas & Subrahmanian 2007 BZ4CAST: Savani et al. (2015,2016) H-CME: Patsourakos et al. (2016); Patsourakos & Georgoulis (2016,2017) FIDO: Kay et al. (2017); Kay & Gopalswamy (2017) Fried: Isavnin (2016) FRED: Gopalswamy et al. (2017,2018) CORE3D: Mostl et al. (2018)

no perfect model; pros + cons

Mostly "fit" in-situ

 $(|\mathbf{B}|$ coronal from in-situ observations, radial fall-off of B parametrized to match in-situ, sheath-region, used instead of flux rope)

models capture the distribution of B in its components at 1 AU

Empirically-Constrained Heliospheric CME Models

EUHFORIA: Spheromak CME

Flux rope modeled as Linear Force Free Spheromak

Talks by C.Scolini; D. Odstrcil ENLIL; F. Chen COIN-TVD

Parameter study using EUHFORIA (Verbeke+2018)

Use **FRED coronal magnetic field** to **initialize** the model for the major CME of 12 July 2012

change the CME axial flux by a factor ~ 7 --> significant
changes in B at 1 AU & ToA

Sun-to-Earth MHD CME simulations

unstable flux rope

energize stable flux rope w/ boundary flows

recovers shock structure

Jin+2017a,2017b talk by M. Jin

x1.6 $|\mathbf{B}|$ + shift by 20 deg N to match in-situ

Standardizing Bz forecasting models

Build a common framework to compare Bz models with observations (e.g., various skill scores, ROC curves etc; widely used in weather & flare forecasting)

IMF Bz scoreboard @ CCMC Savani, Riley, Mays B4CAST model (Savani+2015;2016) achieves similar scores as NOAA forecasters (Austin& Savani 2018)

Coming up soon: PSP & SoLO observations

track CMEs along the SC line with:

remote sensing from both SolO (METIS&SolO HI) & PSP (WISPR)
+ source region from PHI+SPICE+EUI(HRI)
& in-situ

validate near-Sun CME B-field inferences & determine its nature (LFF?, NLFF? **Nieves-Chinchilla talk** on ICME models) determine radial fall-off of B from corona to IP better understand & characterize background solar wind

Bz prediction w/ pattern recognition (Riley+ 2017)

Set reference time & define window dt in past Search 10 years of in-situ data for 50 best dt-long intervals & use their next dt for forecast Good match between forecast + observations Part of the MC should be already observed

Outlook

Test various existing models on the same events & exploit any radio available

Assess uncertainties of observational inferences & impact on heliospheric simulations

Come up with hybrid schemes

Consider complex set-ups (e.g., multiple CMEs, shocks)

Exploit the PSP & SoLO data-stream

Major element of ISEST follow-up