Summery and Discussion from the WG3 (Simulation Working Group)

Fang Shen (Sigma Group @ NSSC)

Jeju, Republic of Korea, 18 - 22 September 2017

(1) Provide global context for all CME events investigated by the ISEST team:

- a. Make comparison among the popular numerical models, and the observations for these CME events;
- b. Try to improve the numerical prediction ability
- (2) Investigate processes of the CME initiation, heliospheric propagation, and CMEs interaction
- (3) Develop tools to assist collaboration of numerical modelers, theoreticians, and observers

• 2. Presentations in WG3

(1) Theme-setting talk by Christina Verbeke:

"Progress of MHD Simulations for the Interplanetary Propagation of Coronal Mass Ejections"

- (2) Contributions by:
- a. Bernard Jackson:
- "Iterative 3-D MHD ENLIL Modeling Using Interplanetary Scintillation (IPS) Observations"
- b. Mark Cheung

"Data-driven evolving models of the solar corona"

c. Kyung-Sun Park

"Response of the Earth's magnetosphere and ionosphere to the small-scale magnetic flux rope in solar wind by the global MHD simulation " Progress of MHD Simulations for the Interplanetary Propagation of CMEs

- Constraining CME model parameters
- Interaction with ambient solar wind and CMEs
- MHD-Simulations
 - Heliospheric modeling
 - ENLIL
 - SUSANOO-CME
 - EUHFORIA

(see talk by C. Verbeke)

EUHFORIA

(see talk by C. Verbeke)

EUHFORIA

June 2015 event: Flux rope

Iterative 3D MHD ENLIL Moding Using IPS

Iterative process with the ENLIL 3-D MHD model

Iterative 3D MHD ENLIL Moding Using IPS

From Yu *et al.*, 2015, Solar Phys., 290, 2519 **CME on 2011/09/09 03 UT**

(a well-studied event using the kinematic IPS, ENLIL, and IPS-driven ENLIL)

Kinematic Model Velocity Time Series

ENLIL IPS-driven Model Velocity Time Series

Kinematic Model Density Time Series

ENLIL IPS-driven Model Density Time Series

Data-driven evolving models of the solar corona

Magnetofriction: a data-driven model which allows us to track how the non-potential solar coronal field evolves over time-scales of hours to weeks.

•Balance of Lorentz force and fictitious frictional force (Yang, Sturrock & Antiochos, 1986; Craig & Sneyd 1986) –Plasma velocity proportional to Lorentz force: $v = v^{-1}$ jxB where v is the frictional coefficient –Evolve magnetic field according to **Induction Equation**.

(see talk by M. Cheung)

Data-driven evolving models of the solar corona

Br at R-Rsun= 4.1 Mm

Br at R-Rsun=41.0 Mm

Response of the Earth's magnetosphere and ionosphere to the smallscale magnetic flux rope in solar wind by the global MHD simulation

Magnetic flux rope distinguished by four types

(see talk by K.- S. Park)

Response of the Earth's magnetosphere and ionosphere to the smallscale magnetic flux rope in solar wind by the global MHD simulation

(see talk by K.- S. Park)

Simulations have really reached the point where very different simulations are used for different goals:

- Real-time forecasting: ENLIL, EUHFORIA
- Providing environment for analyses of real events: ENLIL, EUHFORIA, STELab, SWMF, AWSOM, H3DMHD, CESE, COIN, SUSANOO.....
- Understanding causes of eruption: complex initiation mechanism, as much realistic physics as possible beyond ISEST goals?
- CME-CME interaction: Most advanced domain where people are using simulations + data analysis (remote + in-situ) to learn new things.
- Is there something ISEST wants to focus on?
- Next year: individual progress can be expected: KU
- LEUVEN, STELab, NSSC, Michigan, LMSAL...

3. Conclusion---Future

For coordinated work, 1-2 event(s) should be chosen in coordination with other WGs (1 isolated, 1 multiple?). ISEST-simulation campaign events.

- 2013 March 15, 2015 March 15; 2017 SEP. 4-10?
- What is importance of solar initiation? What are the key model-input parameters for CME simulation?

Direction? Speed? How to determine orientation at 0.1 AU?

- What are forecasting-performances of different empirical, analytical, and numerical models?
- Observe to the second secon

What can be done regarding the geomagnetic-activity forecasting?

