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The Space Environment Center of the National Oceanic and Atmospheric   
Administration defines a SEP event as the flux of interplanetary particles
that exceeds the threshold of 10 pfu during 15 minutes for E >10 MeV.

Solar Energetic Particle (SEP) events

Figure1 Intensity-time profiles of ions for an impulsive (left) and a gradual (right)SEP 
event of the year 2000 as measured by ACE/EPAM (Gold et al. 1998; hereafter Gol98). 
The two lower traces (high energy channels) are proton observations from IMP-8/CPME 
(Sarris et al. 1976; hereafter Sar76).



Modeling SEP Events
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Figure	2	Basic	blocks	and	interfaces	of	the	shock-and-particle	model.
(A.	Aran,	PhD.	thesis,2007)



Ø Our	purpose	is	to	employ	the	MHD-SEP	model	to	study	

the	transport	of	SEPs	in	both	the	uncompressed	solar	

wind	and	the	compression	region;

ØFor	the	sake	of	simplicity,	we	concentrate	on	the	

propagation	of	high-energy	(E	³ 30	MeV)	SEPs	in	the	3D	

background	solar	wind	with	no	disturbances	from	shocks	

or	ICMEs.	

Our purpose:



MHD Model
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The steady state 3D background solar wind is constructed by 
solving the ideal MHD equations with high resolution TVDLF 
scheme (Shen et al., JGR, 2011, 2012, 2013, 2014).

The ideal MHD equations in a solar corotating frame:



MHD Model

ØThe	artificial diffusive	approach	is	used	to	reduce	the	numerical	error	of	
∇·B;
ØInner	boundary:	21.5	Rs (~0.1	AU):
The	radial	magnetic	field	(Br)	is	provided	with	the	PFSS	model;	
The	radial	flow	velocity,	Vr (km	s-1),	is	obtained	from	the	WSA	model.

ØSix-component	composite	
mesh	was	used	to	avoid	the	
coordinate	singularity	near	the	
poles,	in	order	to	reduce	high	
numerical	dissipation;
ØThe	computational	domain	of	
the	mesh	grid	system	is:
0.1	AU	≤	r	≤ 8	AU,	0	≤	θ ≤	π,	
and	0	≤	φ ≤ 2π

Figure	1.	Basic	six-component	grid:	(a)	a	spherical	overset	grid	
and	(b)	a	partition	of	a	sphere	into	six	identical	components	
with	partial	overlaps.	Each	component	grid	is	a	rectangle	in	
the	(θ,	φ)	space	(from	Feng et	al.,	APJ,	2010).



Particle Transport Model—Equations
Focused Transport Equation (Fokker-Planck Equation)：
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Where	f(x,	μ,	p,	t) is	the	gyro	phase-averaged	distribution	function	of	
SEPs	as	a	function	of	spatial	location	x,	particle	momentum	p,	pitch-
angle	cosine	μ,	and time	t.	v is	the	particle	speed,	b	is	the	magnetic	field	
unit	vector,	Vsw is	the	solar	wind	velocity,	Dμμ is	the	pitch-angle	diffusion	
coefficient,	and	LB	=	−	(b·ÑlnB)-1 is	the	magnetic	focusing	length



Particle Transport Model—Equations

The	adiabatic	cooling	effect	is	described	by:

( ) ú
û

ù
ê
ë

é
Ñ+Ñ-×Ñ

-
+÷
ø
ö

ç
è
æ Ñ×+
¶
¶

×-= swswswswsw
sw VbbVbbVVVVb ::

2
1 2

2

µµµ
tv

p
dt
dp

and	the	time	evolution	of	μ is	written	as	
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Particle Transport Model—Equations
Time-backward stochastic differential equations：
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ØThe	simulation	of	
stochastic	processes	
starts	at:	x(0)	=	x,	
μ(0)	=	μ, and	p(0)	=	p	
at	initial	backward	
time	s	=	0	at time t.	
Ø The	equations	are	
solved	with	an	Euler	
scheme	as	the	time	
running	backward.

where	dw(s)	is	a	Wiener	process	as	a	function	of	s
which	is	the	time	running	backward.	dw(s)	can	be	
generated	by	random	numbers	with	a	Gaussian	
distribution	with	a	standard	deviation.

(M.	Zhang	et	al.,	APJ,	2009)



Particle Transport Model—Boundary Conditions

The solution is an average of its values at the exit point of simulated process:
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Parameters Formula Initial	Values

Inner	Boundary r = 𝑅+ 𝑅+ = 0.12AU

Outer	
Boundary r = 𝑅2 𝑅2 = 8AU

Solar	Rotation Ω = 2π/Τ Τ = 27.27	day

Solar	Wind 	𝑽𝐬𝐰= 𝑉@A𝒆C 𝑉@A = 400km G sIJ

Parker	
Magnetic	Field 𝑩=LM

CN
𝒆C −

LMP @QR S
CTUV

𝒆W 𝐵2 = 3.54nT	AU]

Pitch	Angle
Diffusion

		𝐷__= 𝐷2(1 −
𝜇])v𝑝Ibc(ℎ + 𝜇 fIJ)𝜅(x)

𝐷2	is	constant

𝑏J =
2
3 , h = 0.2, q = 5/3

𝜅 x = cos] 𝜓 = 𝐵C/𝐵 ]

Model Parameters Used in the Parker magnetic field & 
MHD background simulations



MHD-SEP model

Ø The combination---Grid of Background Field:

Radial grid with equal ratio: ri = ri-1+qri-1(i=1,2,…,Nr)

Latitudinal grid with same size: θj =(j-1)·π/(Nθ-1)(j=1,2,…,Nθ)

Longitudinal grid with same size: φk =(k-1)·2π/(Nφ-1)(k=1,2,…,Nφ) 

Grid Number: 501(r) × 181(θ) × 361 (φ)

where q is equal-ratio coefficient, Nr , Nθ and Nφ represent the mesh 
numbers in the radial, meridional and azimuthal direction, 
respectively. 
Here Nr=501, Nθ =181 and Nφ=361.



MHD-SEP model

Ø The combination---the reference frames:

ü The momentum, pitch angle and particle speed in the transport equation
are defined in the solar wind frame, while the spatial coordinates and solar
wind speed are defined in the fixed reference frame.

ü The background solar wind obtained in the solar corotating frame is still
time-dependent in the fixed frame. Although time-dependent terms exist in
dp/dt and dμ/dt, they can be excluded due to they are minor terms in
comparison with other terms.

ü For a fixed point, φc is assumed to equal to φf at the initial time in both
frames, then φc =φf –ΩΔt after time Δt.

ü Assuming X-axis in solar corotating frame is coincided with that in the fixed
frame, and the background at the time (t-s) is needed when particles run
backward. A rotation in longitudinal direction is needed to get the
distribution at time (t-s), then we can get the transformed results.

ü The solar wind speed and magnetic field can be derived from the Lorentz
transformation.



Ø Position of 
particles:
(ri',	θj',	φk')	

The	subscripts	:
i'=int(log(ri'/r1)/log(q))+1
j'=int(θj'(Nθ -1)/π)+1

k'=int(φk' (Nφ -1)/2π)+1

Figure4		Illustration	of	the	grid	points	used	in	the	model.	The	
spherical	shell	represents	the	inner	boundary	of	the	model,	with	
the	color	denotes	the	solar	wind	speed	that	is	derived	from	the	
WSA	model.	The	black	solid	line	with	arrow	infers	the	magnetic	
field	line.	

MHD-SEP model

Ø The	data	on	the	
eight	adjacent	grid	
points,	as	marked	
by	i', j'	and	k',	are	
used	to	calculate	
the	background	
parameters.



The trajectory of a sample stochastic process

Figure	5	3D	and	2D	views	of	how	the	particle	move	in	the	MHD	
background.



Uncompressed Solar Wind Conditions
The observer ：（𝒓, 𝜽, 𝝋） =（𝟏, 𝟗𝟎𝒐, 𝟎𝒐）

Figure 6 The distribution of the calculated MHD steady radial speed Vr (km	s-1) for CR2066 within 
8  AU (left panel) and 1 AU (right panel) in the ecliptic plane. The color contours in the left panel 
represent the radial solar wind speed. Streamlines and the black solid circle in the right panel 
denote the magnetic field lines and the observation point, respectively. The region that is between 
the two red dashed lines in right panel is the uncompressed solar wind region. 



Uncompressed Solar Wind Conditions
The observer ：（𝒓, 𝜽, 𝝋） =（𝟏, 𝟗𝟎𝒐, 𝟎𝒐）

Figure 7. Illustration of omnidirectional flux with different background field 
and solar wind parameters under uncompressed solar wind conditions.



Compression Region Conditions

Figure 8 The distribution of the calculated MHD steady radial speed Vr (km	s-1) for 
CR2145 within 8 AU (left panel) and 1 AU (right panel) in the ecliptic plane. The color 
contours in the left panel represent the radial solar wind speed. Streamlines and the 
black solid circle in the right panel denote the magnetic field lines and the observation 
point, respectively. The region that is between the two red dashed lines in right panel 
is the compression region. 

The observer ：（𝒓, 𝜽, 𝝋） =（𝟏, 𝟗𝟎𝒐, 𝟗𝟎𝒐）



Compression Region Conditions

Figure 9 The comparison of omnidirectional flux and 
anisotropy at three different energies with the same 
simulated background field.



Discussion—Adiabatic  cooling effect

Figure 10a The comparison of omnidirectional 
flux and anisotropy solved with and without 
adiabatic cooling.
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Ø The adiabatic cooling effect, only 

lowers the total flux rather than 

altering the enhancement pattern.

Ø The adiabatic cooling effect is 

not responsible for the 

enhancement in the decay phase.



Discussion—Pitch-angle diffusion

Figure 10b The comparison of 
omnidirectional flux and anisotropy solved 
with different parallel mean free paths λ||.

Ø Pitch-angle diffusion is caused 
by the magnetic fluctuations, 
and its strength is determined 
by the parallel mean free path 
(Qin et al., 2004, Zhang et al., 2009);

Ø Since the influence exerted by 
the change of parallel diffusion 
coefficient is similar to that of the 
adiabatic cooling effect, the 
magnetic focusing effect is more 
likely to be responsible for the 
flux enhancement in the decay 
phase.



Discussion— Magnetic focusing effect

Figure 11. Illustration of omnidirectional flux with different 
background field and solar wind parameters under 
compression solar wind conditions.



Magnetic focusing effect

Figure 12, The (LB )-1  at Equator during CR2145.

Ø(LB)-1 generally	describes	the	strength	
of	magnetic	focusing	effect,	and	a	
negative	value	implies	the	focusing	
effect	acts	on	the	opposite	direction.	
ØThis	figure	shows	that	(LB)-1 varies	
between	positive	and	negative	values,	
which	are	different	from	the	only	
positive	values	in	Parker	magnetic	field.	
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Figure	13	The	correlation	coefficients	between	∆Vr (∆Vr =Vi-Vi+1)	and	
(LB	)-1 at	different	radial	distances	locations	during	CR2145.	The	blue	
lines	and	 the	green	lines	represent	∆Vr and	(LB	)-1,	respectively.	The	
gray	shaded	areas	represent	the	variation	of	(LB)-1 and	∆Vr in	the	
simulation	region.

Correlations between ∆Vr and (LB )-1

∆Vr

ØAll	the	correlation	
coefficients	between	them	
are	above	0.87,	which	
indicates	a	strong	
correlation	between	them.	
ØThe	compression	regions,	
as	suggested	by	the	
decreased	∆Vr are	generally	
corresponds	to	small	(LB)-1 ,	
implying	the	magnetic	
focusing	effect	relates	
closely	to	the	compression	
regions



Magnetic focusing effect

Figure	14.	Cartoon	to	show	the	possible	processes	of	magnetic	focusing	
effect.	The	red	and	blue	lines	represent	the	positive	and	negative	values	of	
(LB)-1,	respectively.	The	purple	balls	that	mainly	distribute	between	the	red	
and	blue	lines	infer	the	strong	compression	regions	that	may	reflect	the	
particles	back.	The	black	dash	lines	with	arrow	and	the	black	ball	show	the	
region	that	sweeps	over	the	observer	at	1	AU	and	the	observation	point	

ØWhen	the	particles	transport	in	
the	compression	regions,	magnetic	
focusing	effect	could	scatter	some	
particles	back	like	a	mirror	as	(LB)-1

value	becomes	small.	
ØThe	particles	may	also	be	
reflected	since	an	opposite	
directional	focusing	effect	happens	
as	(LB)-1 becomes	negative.	
ØTherefore	the	observer	detects	a	
flux	enhancement.	



Figure 15  (a) STEREO A observations. (b) Simulation results during the corresponding 
observation time. The shaded region represents the compression region. From top to bottom, the 
panels show the flux of energetic particles, magnetic field strength, proton velocity, density and 
temperature. 

An event observed on March, 2011 by STEREO A



Summary 
Ø With the MHD-SEP model, we study the influence of interplanetary 

structures, such as compression regions, on SEP time intensity profiles.

Ø We find that the particles have a similar behavior in uncompressed solar 
wind with that in Parker spiral magnetic field, but the omnidirectional flux 
of SEP has an enhancement in the decay phase in compression 
regions. 

Ø Our simulation results focus on transport process, exclude the acceleration 
mechanisms and find that the magnetic focusing effect is the main 
reason that leads to the flux enhancement in the decay phase. 

Ø A SEP event with a compression region on March 21-31 2011 event was 
simulated with our MHD-SEP model, and our simulation results could 
qualitatively reproduce the pattern of the flux enhancements during the 
decay phase for this event.	


