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1. Introduction

- Interplanetary CME (ICME) and Geomagnetic storm

- ICME-Earth impact geometries



1. Introduction ICME

 Interplanetary CMEs (ICMEs) generally are known as the
counterparts of CMEs in the interplanetary space.
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1. Introduction ICME

 Interplanetary CMEs (ICMEs) generally are known as the
counterparts of CMEs in the interplanetary space.
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« |CMEs have three-part structures: """ [zhang et al. 2007]

(1) Shock-sudden enhancement of solar wind speed or density

(2) Sheath-enhanced and fluctuating magnetic field strength

(3) Magnetic cloud (MC)-rotating magnetic field signature and low beta plasma



1. Introduction Storm

- A geomagnetic storm is a temporary disturbance of the Earth's
magnetosphere and occurs when the southward magnetic field
component (Bc) of an interplanetary (IP) structure reconnects with
Earth’s magnetic field thereby allowing the entry of the solar wind
energy into the magnetosphere.
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Figure 1. Schematic of interplanetary-magnetosphere coupling, showing the reconnection process
and energy injection into the nightside magnetosphere, which lead to the formation of the storm-time

ring current (Gonzalez and Tsurutani, 1992). [Gonzalez et al 1999]
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Geomagnetic storms can be classified as
follows:

Weak (Dst,,,, > -50 nT),

Moderate (- 50 nT > Dst,,, > -100 nT),
Intense (- 100 nT > Dst,,,, > -200 nT),
Super intense (Dst,,;,, < -200 nT)
[Gonzalez et al., 1994; Kim et al., 2010;
Lee et al., 2014].




1. Introduction MC (or sheath)-Storm
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 |If solar wind conditions of sheaths or MCs cause the geomagnetic
storms, these kind of events as the sheath-associated or MC-
associated storm events, respectively.



1. Introduction ICME-Earth geometries

« 3D impact and magnetic field geometries of ICME can be deduced
from the toroidal magnetic flux rope fitting model based on a force-
free magnetic field inside a toroidal magnetic cloud [Marubashi &

Lepping 2007].
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2. Previous studies

- Relationship between solar wind conditions of ICMEs and storms

- Relationship between solar wind conditions of ICME substructures
(MC and sheath) and storms

- Relationship between 3D magnetic field structures of ICMEs
derived from toroidal magnetic flux rope fitting model and Storms



2. Previous studies
1) Relationship between solar wind conditions of ICMEs and storms

- Several researchers found that the southward magnetic field strength
(B<) and convection electric field (Ey, = V¢ X Bg) in ICMEs have higher
correlation coefficients (cc) with the Dst index than solar wind speeds
(Vsw) [Echer et al.,, 2008; Richardson & Cane 2010]; cc = 0.89 for Bg, cc =
0.90 for Ey, and cc = -0.54 for Vg, [Richardson & Cane 2010].
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correlation coefficients (cc) with the Dst index than solar wind speeds
(Vsw) [Echer et al.,, 2008; Richardson & Cane 2010]; cc = 0.89 for Bg, cc =
0.90 for Ey, and cc = -0.54 for Vg, [Richardson & Cane 2010].

2) Relationship between solar wind conditions of ICME substructures
(MC and sheath) and storms

- Gopalswamy 2008 found that correlation coefficients of solar wind
conditions (Vey, Bs, Ey) iIn MC with Dst index are similar to those in
sheath; In Vg, cc = -0.65 for MC and cc = -0.67 for sheath and In Ey, cc
= 0.90 for MC and cc = 0.86 for sheath.

- Yermolaev et al. 2010 showed that the efficiency of sheath in the
generation of magnetic storms is higher than MC by using the method
of superposed epoch analysis.




2. Previous studies

3) Relationship between 3D magnetic field structures of ICMEs
derived from toroidal magnetic flux rope fitting model and Storms

- Cho et al. (2017) examined two ICME-storm pairs and suggested that
even if an ICME hits the Earth by flank, it can cause a strong storm when
its inherent magnetic field keeps southward throughout its passage. The

magnetic field conditions change depending on where the Earth located
in the ICME.




2. Previous studies

3) Relationship between 3D magnetic field structures of ICMEs
derived from toroidal magnetic flux rope fitting model and Storms

- Cho et al. (2017) examined two ICME-storm pairs and suggested that

even if an ICME hits the Earth by flank, it can cause a strong storm when
its inherent magnetic field keeps southward throughout its passage. The

magnetic field conditions change depending on where the Earth located
in the ICME.

% The main purpose of this study is that to better
understand of storm generation by an ICME, we statistically
examine the effects of geometries (impact location of flux
rope at the Earth) and substructures (sheath and MC) of
ICMEs on geomagnetic storms. %




3. Data selection & Analysis

- Data selection
- Analysis

- Solar wind data



3.1 Data selection

« Consider 59 CME-ICME pairs from CDAW list
"Do all CMEs have flux rope structure?"
(http://cdaw.gsfc.nasa.gov/meetings/2010 fluxrope/LWS CDAW?2010 ICMEtbl.html)

« Apply the toroidal magnetic flux rope fitting model to the ICME-storm
pairs to identify their substructures and geometries, and select 25
MC-associated and 5 sheath-associated storm events.


http://cdaw.gsfc.nasa.gov/meetings/2010_fluxrope/LWS_CDAW2010_ICMEtbl.html
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3.2.1 Solar wind data
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3.1 Data selection

« Consider 59 CME-ICME pairs from CDAW list
"Do all CMEs have flux rope structure?"
(http://cdaw.gsfc.nasa.gov/meetings/2010 fluxrope/LWS CDAW?2010 ICMEtbl.html)

« Apply the toroidal magnetic flux rope fitting model to the ICME-storm
pairs to identify their substructures and geometries, and select 25
MC-associated and 5 sheath-associated storm events.

3.2 Analysis

« Make a simple linear-regression analysis to find out the relationship
between Dst index and solar wind conditions of ICME substructures
(MCs and sheaths).

« Examine the dependence of the geomagnetic storms on the
combination of ICME-Earth impact geometries such as following:
eastern flank and positive value of PY [E+P,,], eastern flank and
negative value of PY [E+P, ], western flank and positive value of PY
[W+P,,], and western flank and negative value of PY [W+P,_]. For this,
we use the MC-associated storm events.


http://cdaw.gsfc.nasa.gov/meetings/2010_fluxrope/LWS_CDAW2010_ICMEtbl.html

4. Results

- Relationship between solar wind conditions of ICME substructures
(MC and sheath) and geomagnetic storms

- Dependence of the geomagnetic storms on the combination of
ICME-Earth impact geometries



4.1 Relationship between solar wind conditions of ICME
substructures (I\/IC and sheath) and geomagnetlc storms
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4.2 Dependence of the geomagnetic storms on the
combination of ICME-Earth impact geometries
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4.2 Dependence of the geomagnetic storms on the
combination of ICME-Earth impact geometries
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4.2 Dependence of the geomagnetic storms on the
combination of ICME-Earth impact geometries
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5. Summary

- Relationship between solar wind conditions of ICME substructures
(MC and sheath) and geomagnetic storms

- Dependence of the geomagnetic storms on the combination of
ICME-Earth impact geometries



S.Summary

1) Relationship between solar wind conditions of ICME sub-structures (MC and
Sheath) and Geomagnetic storms

- Correlation coefficients (CCs) of solar wind conditions in sheath with
Dst index are higher than those in MC; for EY , CC = 0.97 in sheath
and CC = 0.77 in MC.

- The slope of a linear regression line for sheath-storm events is about
two times steeper than that of the MC-storm events in the relationship
between storm strength (Dst index) and E, xTjg..

2) Dependence of the geomagnetic storms on the combination of ICME-
Earth impact geometries

- 73 % (11/15) of storms and 100 % (4/4) of intense storms (Dst, . < -100
nT) occur in the regions at negative P, for the Eastern flank events while
60 % (6/10) of storms and 83 % (5/6) of intense storms occur in positive
P, regions for the western flank events.

% Our results demonstrate that the strength of a geomagnetic
storm is strongly affected by not only ICME substructures (sheaths
and MCs) but also ICME-Earth impact geometries (Py on ICME-Earth
trajectory). %
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