ISEST 2017 Workshop, 18-22 September 2017

What we can learn from the ISEST WG4 Campaign Study of Sun-Earth events?

> K. Marubashi (NICT), K.-S. (KASI) And H. Ishibashi (NICT)

Introduction

WG 4 (Campaign Events)

Objectives:

To understand cause-effect chain of Sun-Earth activity
 To develop space weather prediction capability
 <u>Task</u>: To study selected events (T, U, P categories)

Present report

- Analysis of possible flux rope structure in the 11 events
 Consideration on key factors in the cause-effect chain
- (CME initiation, ICME propagation, geoeffectiveness, etc.)
- ♦ Report for 4 (5) selected events (Marubashi et al., 2017)

Final comments

Difficulties in REAL predictions (cf. retrospective study)

ISEST/MiniMax WG4 Event List

ID	Dates	Solar Events	Solar Wind	Dst	Туре					
1	2012 July 12-14	X1 flare, CME	Shock, MC	-127	т					
2	2012 Oct. 4-8	CME (stealth?)	Shock, MC	-105	P/U (solar source?)					
3	2013 Mar. 15-17	M1 flare, CME	Shock, MC?	-132	т					
4	2013 June 1	CME?	Shock, CIR?	-119	P (strong storm?)					
5	2015 Mar. 15-17	C9 flare, CME	Shock, MC	-223	P/U (super storm?)					
6	2015 June 21-24	2 M fls, CMEs	Shock, MC	-204	Т?					
7	2012 Mar. 7-9	X5 flare, CME	Shock, MC	Shock, MC -131 T						
8	2012 July 23-24	2 fls, EPs	STEREO-A (Carrington-type), T?							
9	2012 Jan. 6	CME, West-Limb	No storm, GLE at Earth P/U							
10	2014 Jan. 7-9	X1 flare, CME	Shock, No MC		P/U (MC deflection)					
11	2014 Sep. 10-13	X2 flare, CME	Shock, MC	-75	P/U					
	Type: T - Teythook D - Drohlem 11 - Understood									

Type: T = Textbook, P = Problem, U = Understood

Only yellow-highlighted events are reported

Event No. 5: March 15-17 storm (The largest in Cycle 24)

Question: What caused such an intense storm?

Previous studies

Kamide & Kusano (2015), SpW: Superposition of two storms
Kataoka *et al.* (2015), GRL: Intensification due to pileup effect
Liu et al. (2015), ApJL: GS reconstruction of two MCs
Gopalswamy *et al.* (2015) IE Symp: Comparison with statistics
Wang *et al.* (2016), JGR: Fitted to cylindrical flux rope
Cho et al. (2017), JKAS: Fitted to toroidal flux rope
Marubashi *et al.* (2016), EPS: Toroidal flux rope, Dst development

In this talk

Cylinder vs torus: Torus model provides better interpretation. Dst analysis: The prolonged southward IMF caused the strong storm.

Solar wind features and corresponding Dst variation, March 17-18

<u>Causative solar eruption (commonly accepted)</u>

C3: 2015/03/15 05:30:05 SDO/AIA304 03/15 01:38:44 Halo CME: March 15, 01:48 UT (LASCO C2) C9.1 flare: 01:15 UT, S22W25 (AR 12297)

(a) Full halo CME in LASCO C3 image
(b) Flare ribbons in AIA 304 image
(c) PIL where the main eruption occurred arrow: orientation of the horizontal field component (for positive helicity)
(d) Filament eruption in H image

SDO/HMI 03/15 01:00

Geometry of interplanetary flux rope (torus-fit)

Spacecraft crossed near the eastern flank (consistent with the eruption in the western hemisphere), where the magnetic field is southward throughout passage. Thus, prolonged southward field attacked the Earth!

Comparison: cylinder vs torus model

cylinder model Fit is not so good as torus-fit. Axis orientation (280) is largely

different from PIL orientation. Spacecraft passes near the western edge of flux rope.

Thus, cylinder-fit is unacceptable.

Analysis of Dst Development

According to Burton *et al.* (1975) $\frac{dD_{st}^{*}}{dt} = Q - \frac{D_{st}^{*}}{\tau} \quad (Dst^{*}:modified)$

Solution is given as:

$$D_{st}^{*}(t) = e^{-t/\tau} \cdot \left[D_{st}^{*}(0) + \int_{0}^{t} Q_{sw} \cdot e^{t/\tau} dt \right]$$

- Two-step development is NOT the reason for the intense *Dst.*
- Prolonged southward Bz is essential.

Consideration on chain link

- ♦ Flux rope axis: parallel to AR PIL
 - \rightarrow flux rope formed: parallel to PIL
 - → Rotation effect: insignificant both in corona & in solar wind
- ♦ IFR deflection effect:
 - \rightarrow toward SE plane: required
 - → E-W direction: not clear (because the size is unkown)
 - → If had deflected a bit to WEST, then IFR would not hit Earth.
 - → If had deflected to EAST, then IMF changed S-W-N (shorter duration of Bz < 0.)</p>
- ◆ Prediction?

Even if we could predict the shape of the IFR, it is IMPOSSIBLE the encounter geometry! Event No. 11: 2014 September 12-13 storm Question: Why the storm was so weak? (originally P)

Causative solar eruption (originally suspected)

10 September, X1.6 flare, Sep 10/17:21 (start) in AR 12158 (N11E05), start: 17:21 UT A full halo CME : 18:21 UT first appearance in LASCO C2 FOV

Two flux rope geometries: from Torus-fit

Required polarity change in the solar source (if parallelism assumed)

- Both right-handed (R) and left-handed (L) models reproduce the observation.
- Spacecraft passage: southern edge (L)

northern edge (R)

Bz > 0 throughout the S/C passage

Eruption details (Cho et al., 2017)

 FACT: a multi-onset event of two separate eruptions: Eruption 1 at N15 E07 , CME 2 (18:00 UT): faint one Eruption 2 at N17 E03 , CME 1 (18:12 UT): prominent one

- ♦ CME 1 did not hit the Earth.
- CME 2 is the origin of the September 10 flux rope. (Required polarity change is satisfied, and axis parallel to PIL.)

FACT: 2 eruptions and 2 CMEs (one to N, one to S)

CME1: from the western eruption, denser, moved toward the Earth

CME2: from the eastern eruption, lower density, may be a shock,

moved to south

Consideration on chain link

◆ Flux rope formation, source eruption
→ prominent CME from smaller flare
→ faint CME from larger flare

♦ 2 CMEs: one hit the Earth, the other not

◆ Flux rope (L) axis: parallel to PIL
→ flux rope formed: parallel to PIL
→ Rotation effect: insignificant
both in corona & in solar wind

♦ IFR deflection

- \rightarrow very large (CME 2), very small (CME1)
- \rightarrow If the Earth hit a little East, Bz > 0
- → If CME 1 deflected a little more southward, Bz changed E-S-W

Prediction?
 Again, IMPOSSIBLE
 to predict the
 Earth hitting point?

Event No. 1: 2012 July 12-14 Event (Textbook type)

Solar eruption from Dudik et al., 2014

Flare: 2012 July 12, 16:42 (Max) S14W01 (AR 11520) 2N/X1.4 Full halo CME at 16:48 UT

flux-rope structure from cylinder-fit

Note: Southward field observed throughout the passage, while the PIL at source suggest roughly N-E-S polarity change. The peculiar encounter explains. The tilt of cylinder axis: 325 Eastward deflection suggested from the axis tilt.

Reconstruction by Grad-Shafranov eq.

Perhaps, this is a wrong result caused by relaxing requirement for application of this method.

Consideration on chain link

- ♦ Flux rope (L) axis: parallel to PIL
 - \rightarrow flux rope formed: parallel to PIL
 - → Rotation effect: insignificant both in corona & in solar wind
- ♦ IFR deflection
 - \rightarrow Eastward deflection: clear
 - → Northward/Southward deflection: Not clear (Size is unknown)
- Southward magnetic field throughout passage: Interpreted by the peculiar encounter
- Prediction?

The peculiar encounter: impossible to predict?

Event No. 6: 2014 Jun 21-24

Minimum Dst = -204 nt (Second biggest storm in Cycle 24) TB? case with M2.7 flare, halo CME on 21 June, and IFR (MC)

Solar eruption suggested within WG 4

SDO/HMI 2015 June 21 02:00

SDO/AIA094 2015 June 21 01:44

C3: June 21/04:05 UT

This is the only event that deviates from the general feature seen in other vents as described below. <Unsettled>

Two flux rope structures from torus-fit

Blue: Left-handed Red: Right-handed

IFR Axis orientation: inconsistent in either of fits. Possible approaches toward resolving the problem

(1) Other possible IFR intervals?

Liu et al. (2016): two separate flux ropes (not shown)

- (2) Possibility of other solar source event(s)? This requires: Careful survey of CMEsLarge deflection of the June 21 CME (avoid Earth hitting)
- (3) Attributing to IFR rotation during propagation to Earth May be needed are:
 - A different flux rope model (obtained L type: no good)
 - A different solar source event
 - Precise interpretation about how it rotated

Possible supporting evidence for approach (2)

Comparison of the ACE and Wind observations

Suggested is

IPS observations shows: the IFR (shock) appears earlier than the flare (June 21/01:42)

What's more about other solar wind quantities needed?

Magnetic field intensity: magnetic flux comparison, Sun and 1 AU Solar wind velocity: not addressed (relation with IFR is weak)

Summary

We have seen the flux rope structures and their solar origins for the WG 4 campaign events.

It seems possible (at least in principle) to predict magnetic structures of ICMEs from solar observations.

We recognize many problems that need further studies. CME-source eruption correspondence: still unclear ICME propagation: strongly affects IMF at Earth

We strongly recognize the difficulty of prediction: we may "correctly" predict the shape of ICMEs, but what we need is "precise" geometry

Thank you For your attention!

TABLE 2. Analysis Results

ID	Solar Wind (IP Flux Rope)				Solar Source Region		Helicity	tilt	
	S/C	Model	R/L	IFR tilt	N/S	PIL tilt	Rule?	agree?	
1	WIND	cylinder	R	320	S	325	Yes	Yes	
2	WIND	torus	R	323	S	330	Yes	Yes	
3	ACE	torus	L	227	Ν	230	Yes	Yes	
4	ACE	torus	L	272	Solar source event is not identified yet				
5	ACE	torus	R	173	S	165	Yes	Yes	
6	ACE/WIND	torus	R, L	??	Solar source unclear		?	?	
7	WIND	torus	L	37	Ν	42	Yes	Yes	
8	SREREO-A	cylinder	R	258	S	(260)	(Yes)	(Yes)	
9	ACE/WIND								
10	ACE/WIND								
11	ACE	torus	L	247	Ν	245	Yes	Yes	

Event No.1

- SDO/HMI 16:30 12-JUL-2012
- AIA 304 16:45 12-JUL-2012

Event No. 2

SDO/HMI 02:00 05-OCT-2012

AIA 304 02:00 05-OCT-2012

AIA 094 08:01 15-MAR-2013

SDO/HMI 05:30 15-MAR-2013

Event No. 5

AIA 304 01:38 15-MAR-2015

SDO/HMI 01:00 15-MAR-2015

Event No. 6

AIA 094 02:15 15-JUN-2015

SDO/HMI 02:00 21-JUN-2015

No Magnetic Field Data (STEREO)

Event No. 8

EUVI 03:35 23-JUL-2012

Event No. 7

AIA 094 01:13 07-MAR-2012

SDO/HMI 00:30 07-MAR-2012

AIA 304 17:24 10-SEP-2014

SDO/HMI 17:30 10-SEP-2014

統計結果: (1)磁気ロープ軸が発生域のPILに平行、(2) helicity rule

Marubashi et al., Solar Phys (2015) 290: 1371-1397. DOI 10.1007/s11207-015-0681-4

