# Solar Events Associated With SSCs in 2002: propagation and effects from the Sun to the Earth

#### B. Schmieder

**K. Bocchialini**, M. Menvielle, A. Chambodut, N. Cornilleau-Wehrlin, D. Fontaine, B. Grison, C. Lathuillère, A. Marchaudon, M. Pick, F. Pitout, S. Régnier, B. Schmieder, Y. Zouganelis





Bocchialini et al 2017, just accepted
Solar Physics in a special issue "Earth-affecting Solar Transients"

#### Introduction - Motivation

The aim: to investigate the link between Coronal Mass Ejections (CME) and the geomagnetic storms, related by the occurrence of a Sudden Storm Commencement (SSC),

SSC: sudden growth of the magnetic field strength at the Earth's surface, signature of the impinging of a shock on the magnetopause.

Starting point: the 32 SSCs of year 2002 listed by the observatory de l'Ebre /ISGI. Identification of the nature of the perturbation at L1, relying on existing catalogues, and characterize it.

Association to a solar source we perform a multi-criteria analysis (velocities, drag coefficient, radio waves, helicity).

---- impact of the solar event studied on the whole chain from Sun to Earth (magnetosphere, ionosphere, thermosphere), as a function of the Dst index value.









#### The Data sets

Multidisciplinary data base, of various origins and regions of the Sun-Earth trajectory, for the period 1996-2007 (www.ias.u-psud.fr/gmi)

Focalisation on 2002, solar activity maximum.

| Region                                    | data                                                                                                                                                                                                           |
|-------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Sun                                       | EIT/SOHO and LASCO/SOHO, catalogues of CMEs <a href="https://cdaw.gsfc.nasa.gov/CME_list/">https://cdaw.gsfc.nasa.gov/CME_list/</a> + radio observations, WIND, NRH and DAM in Nançay                          |
| Interplanetary Observations at L1         | ACE, AMDA/CDPP and OMNiWEB/NASA facilities                                                                                                                                                                     |
| Magnetosphere                             | Position of the magnetopause, terrestrial radio emission (AKR and NTC), Cluster (CSDS plots) and Geotail (PWI)                                                                                                 |
| Coupled System magnetosphere / ionosphere | Electrodynamic activity: different <b>geomagnetic indices</b> computed from measurements at stations of the worldwide network of geomagnetic observatories ISGI (International Service of Geomagnetic Indices) |
| Ionospheric response                      | Super Dual Auroral Radar Network (SuperDARN), giving in particular the variations of the polar-cap potential                                                                                                   |
| Thermosphere                              | Density variations computed from measurements of accelerometers on-board the CHAMP satellite.                                                                                                                  |

#### Example of one event: characterization of a MC

Magnetic Cloud (MC) at L1 (17 april – 19 april 2002):

The shock and the sheath causes

- -- a SSC: increase of B,N,V
- followed by a geomagnetic storm and a first decrease of the Dst (min Dst=-100 nT).

The MC causes also

- -- a rotation of IMF, a decrease of N and V
- -- a fast increase of Dst (-125 nT) followed by a second decrease of the Dst, that we called Sudden Secondary Event (SSE)





#### At L1

The 32 SSC are due to 31 events sorted as follows:

- 12 MC (Magnetic Clouds)
- 6 ICME (Interplanetary CME, non MC)
- 4 CIR and 1 SIR (Corotating /Streaming Interaction Region)
- 4 Miscellaneous (not classified)
- 4 Shock events

#### **Association 1<sup>st</sup> step: window of 5 days**

#### At the Sun

60 CME with visible source : all 2002 halo CME (28) plus non halo in a 5 days time window from SSC

- 4 CME halos: no SSC
- 3 SSC: no CME: are S/CIR at L1

Many CMEs can be the source of a given SSC



#### events

- 2<sup>nd</sup> step: 4 new criteria
  - 1. Velocity
  - 2. Radio waves
  - 3. MC helicity
  - 3. Drag based model

| Velocity                                                                        | Radio Waves                            | MC helicity                               | Drag Based Model                                                  |
|---------------------------------------------------------------------------------|----------------------------------------|-------------------------------------------|-------------------------------------------------------------------|
| V <sub>sun</sub> >V <sub>balistic</sub> > V <sub>L1</sub><br>priority criterium | Type II ; Type IV                      | Source: N/S<br>L <sub>1</sub> :left/right | 10 <sup>-8</sup> < drag coeff < 10 <sup>-5</sup> km <sup>-1</sup> |
| Fulfilled for 20/28 SSC<br>Associated with a solar<br>source                    | 27 events (83%)<br>CME-SSC association | MC: 8/12                                  | 22/26 (85%)                                                       |



Example of SSC 06

EIT/SOHO 22/03/2002

https://sites.lesia.obspm.fr/gmi-radio-cme/











15 March 2002

22 March 2002

- $\rightarrow$  28 SSCs correlated to 44 CMEs; 3 SSCs without an identified solar source
- → 21 halo CMEs among 28 halo CMEs related to 31 SSCs in 2002
- → 75% of 28 halo CMEs in 2002 (with visible source) are geoeffective
- → 4% of non-halos (23/~500 in 2002) are geoeffective
- → 13 events /28 have the contribution of several CMEs, 15/28 the contribution of only one CME:

| Events at        | single solar source<br>CMEH CMEN CMEP |      |      | multisources<br>CMEH no CMEH |         | no solar | Total |
|------------------|---------------------------------------|------|------|------------------------------|---------|----------|-------|
| L <sub>1</sub>   | OMER                                  | CMEN | CMEF | CMEH                         | по Смен | source   |       |
| $12~\mathrm{MC}$ | 3                                     | 2    | 0    | 5                            | 2       | 0        | 12    |
| 6 ICME           | 2                                     | 0    | 0    | 3                            | 1       | 0        | 6     |
| 4 Misc.          | 2                                     | 0    | 0    | 2                            | 0       | 0        | 4     |
| 4 Shock          | 1                                     | 1+1? | 1    | 0                            | 0       | 0        | 4     |
| 5  SIR/CIR       | 1                                     | 1?   | 0    | 0                            | 0       | 3        | 5     |
| Total            | 9                                     | 3+2? | 1    | 10                           | 3       | 3        | 31    |

70% in agreement with the choice of CMEs by Gopalwamy 2010



#### Events at L1 in 2002 associated to an SSC

|                       | Events in 2002 |       |            | Well-observed events |      |            |
|-----------------------|----------------|-------|------------|----------------------|------|------------|
| Structure at $L_1$    | total          | + SSC | Efficiency | total                | +SSC | Efficiency |
| MC                    | 17             | 12    | 71 %       | 11                   | 11   | 100%       |
| ICME (non-MC)         | 25             | 12    | 48%        | 10                   | 6    | 60%        |
| SIR/CIR (non-ICME)    | 41             | 5     | 12%        | -                    | -    | -          |
| IP shock (incl. ICME) | 35             | 28    | 80 %       | -                    | -    | -          |

- → The shocks are good proxies to forecast a SSC
- → MCs are the most efficient "drivers" of SSCs

Well-observed = referenced in more than 2 catalogues



#### Statistics of the solar sources

```
44 CMEs, with solar source:

28 « leading » CMEs,

16 « contributing » CMEs
```

#### **Source** of CME:

- 91 % (40/44) from an active region (with or without filament)
- 60 % (26/44) imply the eruption of a filament (in or without AR)
- No relationship with the X class of flare (2 X, 19 M, 15 C)
- 73% (32/44) in the southern hemisphere; 27% (12/44) in the northern; 36% (16/44) from East; 64% (28/44) from West. One West Limb AR is responsible of a geoeffective event.
- 75% des halo CME induce SSCs
- (13/14) of the more geoeffective events (min(Dst)<-51nT) are associated type IV radio waves</li>



## Propagation time at L1: comparison



Models of Huttunen et al 2005 and DBM for the ICME (MC or not ).



Models of Huttunen et al (2005) and Schwenn et al (2005) for the shocks

→ The agreement is not improved by considering only halo CME or event due to only one CME. There are almost as many negative than positive delays. (Vexp= Vradial/0.88)





#### Geoeffectiveness of the SSC leaded

- weak (min(Dst) > -50 nT)
- moderate (-100 < min(Dst) < -50 nT)
- intense (−200 < min(Dst) < −100 nT).</li>

75% of intense storms and 40 % of moderate storms in 2002 are associated to a SSC.

| Intense storm | Moderate storm      | No or Weak Storm                                                                                                                                                         | Total                             |
|---------------|---------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------|
| 7             | 4                   | 1                                                                                                                                                                        | 12                                |
| 2             | -                   | 4                                                                                                                                                                        | 6                                 |
| -             | 2                   | 2                                                                                                                                                                        | 4                                 |
| -             | -                   | 4                                                                                                                                                                        | 4                                 |
| -             | -                   | 5                                                                                                                                                                        | 5                                 |
| 9             | 6                   | 16                                                                                                                                                                       | 31                                |
|               | Intense storm 7 2 9 | Intense storm         Moderate storm           7         4           2         -           -         2           -         -           -         -           9         6 | 7 4 1<br>2 - 4<br>- 2 2<br>4<br>5 |

92% of the MC lead to moderate to intense storms. 33% of ICME lead to intense storms and 66% weak storms. The shocks and CIR/SIR cause "at best" weak storms.



# Regional geomagnetic response

The value of different indices has been integrated, for each event, over the event duration and the integrated value is plotted on the figure as a function of the min of Dst value. A different symbol is used for each kind of event at L1.



- → ICME/MC are the more geoeffective
- → One can observe a kind of saturation for Dst values lower than -150nT, may be due to a polar cap saturation, to aurora going toward lower latitude,...

PCN: "northern polar cap" = measurement of E field of the polar convection

Al : magnetic activity due to aurora electrojets

ASY-H: measurement of the asymmetric part of the B field to the title to the best of the asymmetric part of the B field to the best of the asymmetric part of the B field to the best of the asymmetric part of the B field to the best of the best of



# Properties at L1 of geoeffective MC /

For geoeffective MC and ICME:

- Role of the IMF  $B_z$ <0
- for intense storms, the integrated  $B^*_{z<0}$  value is (-12 <  $B^*_{z<0}$  < -4 nT) (see figure on the left)
- Bpz ,the Bz<0 peak value, is (-43 < Bpz < -11 nT ) favoring solar wind-magnetosphere coupling through dayside reconnection (see figure on the right)</li>







The best correlation between the peak of  $B_{z<0}$  and the other events at L1

-low to moderate mean  $\beta$  (0.03<  $\beta$  <1.1), implying magnetic compression moderate mean Mach number (3.6 < MA < 6.5),

globally lower than in usual solar wind.

## Magnetosphere properties

# **Magnetopause position** (observed within 90 minutes of SCC in only 7 cases):

- -Compression of the magnetosphere
  - with  $\Delta$  (R<sub>E</sub>)  $\propto$  SSC amplitude
  - the strongest compressions  $(-3.7 < \Delta)$  (R<sub>E</sub>) <-2.3) for shocks due to MC

# Observation of Earth radio emissions

Injection of energetic particules:

- Auroral Kilometric Radiation AKR:
   observed for 23/30 events
   When not observed, AE index <800 nT, Dst>-50 nT
- Non Thermal Continuum (NTC) observed for 27/29 events.
   Not observed, Dst ~0





#### Conclusions

44 CME (including 20 halo CME) are at the origin of 28 of the 32 year 2002 SSCs;

Despite multicriteria for SSC-CME association, including radio wave diagnosis (type IV and type II waves), some cases remain ambiguous.

100% of the well defined Magnetic Clouds induce an SSC

Magnetic Clouds (MC) and ICME (non MC) are the most geoeffective at magnetospheric, ionospheric and thermospheric level.

About the geoeffectivity index SSC:

75% of the year 2002 intense storms (Dst <-100nT) are associated with a SSC

40% of the moderate ones (-100nT< Dst < -50nT) are associated with a SSC.

www.ias.u-psud.fr/gmi (login: gmi, password: cme).





#### **Space Weather interplanetary CubeSat mission concepts**





# X-Cube-Sat launched from ISS (goal: O in the thermosphere)



QB50\* VKI David Masutti



# Properties of the Ionosphere and

The ionospheric response for the maximum values PCP (SuperDARN):

- -for the overall 31 SSC-leaded events : 39% for max(PCP) > 95 kV and 51.5% for 75  $\,$  <max(PCP) < 95 kV
- -during the 13 geoeffective ICME-MC and non MC: PCP > 95 kV (strong response) for 9 events (69%) 75 < PCP9 < 5 kV (moderate response) for 4 events (31%)

The PCP response, globally stronger for the strongest geomagnetic storms, shows a reinforcement of auroral ionospheric convection during ICME- MC driven storms.

The 13 geoeffective ICME and MC show thermospheric response (100%):

The 3 strong ones among the 31 events (strong = an increase of the nocturnal neutral density of more than a factor of 2) correspond to

- 3 intense geomagnetic storms.
- 7 moderate responses (54%) (which correspond to 6 intense and 1 moderate geomagnetic storms), and 3 weak responses (23%) which correspond to 3 moderate geomagnetic storms.



nclude: we confirm that the events with a low Dst have a strong strenh of the heric

# Properties at L1 of geoeffective MC/

#### For geoeffective MC and ICME:

- for intense storms, the integrated  $B_{z<0}^*$  value is  $(-12 < B_{z<0}^* < -4 \text{ nT})$ 



Good correlation with the integrated Bz on the



The best correlation between the peak of Bz and the other events at L1

duration of ICME/MC

- $B_{pz}$ , the  $B_z$ <0 peak value, is (-43 <  $B_{pz}$  < -11 nT ) favoring solar wind-magnetosph dayside reconnection (see figure)
- low to moderate mean  $\beta$  (0.03<  $\beta$  <1.1), implying magnetic compression
- -moderate mean Mach number (3.6 < MA < 6.5), globally lower than in usual solar



SUNIVERSITÉ PARIS SUD Comprendre le monde.

# Magnetosphere properties

#### Magnetopause position, observed in 7 cases:

-Injection of energetic particules: Earth radio emissions : AKR (23/30);

- When not observed, AE index <800 nT,</li>
   Dst>- 50 nT
- NTC observed for 27/29 events. Not observed, Dst ~0 (see figure on the right).



