ISEST 2017 Workshop September 18-22, 2017 Jeju, Rep. of Korea

Progress on Solar Activity (Flares and Coronal Mass Ejections) Prediction in Space Weather Science

Jie Zhang (George Mason University)

Prediction

Our prediction capability mainly depends on the quality of observations. It also depends on improved theoretical understandings and the capability of data-driven numerical simulation

Outline

The prediction of Time of Arrival (TOA) of CMEs
 ~days of prediction for geomagnetic storms
 but not for EM radiation and solar energetic particles

2. Prediction of Solar Flare/CME Onset
hours of prediction for EM radiation and solar energetic particles

Predicting TOA of CMEs

If we only had flare observations (prior SOHO): ——>Uncertainty of ~30 hrs

If we only had flare and near-Sun CME observations (with SOHO): ---->Uncertainty of ~15 hrs

When we have two-point observations (with STEREO: ——>Uncertainty of 2-10 hrs depending on models

The Era of Global Observations

Predictions: the State

- Real time prediction based on beacon data: -12 hr to +12 hr for 11 April 2010 event (Davis et al. 2011)
- Real time prediction by SWPC with ENLIL plus cone model: error 7.5 hr, RMS 8 hr (Millward et al. 2013)
- Prediction using GCS model and a combination of methods: error 8.1 hr, RMS 6.3 hr (Colaninno et al. 2013)
- J-map of HI images, constant speed: error 6.1 hr, rms 5.1 hr (Mostl et al. 2014)
- ESA model using eastward CME: error 7.3 hrs, RMS 3.2 hr (Gopalswamy et al. 2013)
- DBM with CME speed from cone model: error 14.8 hrs, RMS ~14 hr; ENLIL similar errors (Vrsnak et al. 2014)
- Improved DBM model with GCS/spheroid measurement and GCS geometry correction: error 3.5 hrs, RMS 1.5 hrs (Hess & Zhang 2015)

Global Kinematic Evolution: A four-phase scenario

Phase 1	Phase 2	Phase 3	Phase 4
near surface	inner corona	outer corona	Interplanetary space
< 0.2 Rs	< 2 Rs	2 - 20 Rs	20 - > 220 Rs
< 100	100-3000	200 - 2500	300 - 1500
km/s	km/s	km/s	km/s
< 100	100 -10000`	-100 - +100	-20 - +20
m/s²	m/s²	m/s²	m/s²
pre- cursor phase	impulsive- acceleration phase	residual- acceleration phase	drag phase

Phase 4: the drag dominates

Drag-based model (Vrsnak 2001): velocity changes monotonically and will reach an asymptotic value

$$a(t) = -\gamma \left(V(t) - V_{sw} \right) \left| V(t) - V_{sw} \right|$$
$$V(t) = \frac{V_0 - V_{sw}}{1 + \gamma \left(V_0 - V_{sw} \right) t} + V_{sw}$$
$$r(t) = \frac{1}{\gamma} \ln[1 + \gamma \left(V_0 - V_{sw} \right) t] + V_{sw} t + r_0$$

3D Measurement

Propagation Direction

Lat: S10° Lon: W01°

(Hess & Zhang 2014)

Shock Front: spherical/spheroid model
Ejecta Front: GCS model

True Height-Time: Shock and Ejecta

Drag model: shock front (not an optimal one) (Hess & Zhang 2014)
Drag model: ejecta front

Events of Study

Table 1 A Summary of the Observed Characteristics for the Seven CMEs in Our Study									
First Measurement ^a	SH Arrival ^b	EJ Arrival ^b	Direction ^e	Widthe	×°	V_0^{d}	V _{sw} ^c	R_0^{f}	R_f^{t}
04/03/2010 10:24	04/05 08:00	04/05 11:30	E06S26	25.0	.379	854.7	512,4	5.5	62.8
05/24/2010 14:54	05/28 02:00	05/28 07:00	E28N03	22.6	.468	605.7	362.3	4.6	45.0
09/14/2011 00:24	09/17 02:00	09/17 19:00	W20816	24.0	.489	519.5	396.9	5.3	28.1
07/12/2012 16:54	07/14 17:00	07/15 07:15	W00509	25.4	.370	1492.0	353.7	4.3	76.6
09/28/2012 00:24	09/30 23:00	10/01 06:00	E28N17	33.3	.327	1230.5	310.4	6.3	74.1
10/27/2012 17:24	10/31 15:00	11/01 00:00	E12N12	31.9	.407	400.1	289.8	6.2	49.0
03/15/2013 07:24	03/17 15:30	03/18 00:00	W24S07	27.1	.389	1220.2	429.3	7.4	37.0

We use (1) seven best observed events, (2) with best measurement, and (3) considering a variety of corrections, for the prediction of TOA (Hess & Zhang 2015)

Results

 Table 2

 The Predictions for Each Front in Time, Velocity, and Density as Derived from the Model, Compared to In Situ Observations from ACE

ICME Date ^a	$\Delta T_{\rm SP}^{\ b}$	$\Delta T_{\rm EJ}{}^{\rm b}$	$\Delta V_{\rm SF}^{\rm e}$	$\Delta V_{\rm EJ}^{c}$	$\rho_{\rm ratio}(R(0))^{\rm d}$	$\rho_{\rm ratio}(L1)^{\rm d}$	$\rho_{\text{ratio}}(ACE)^{\text{e}}$
04/05/2010	1.89	0.38	23.3	26.4	32.17	0.91	0.41
05/24/2010	5.69	2.52	96.3	38.1	6.70	0.15	1.21
09/14/2011	6.68	4.39	15.8	13.0	3.24	0.09	0.71
07/12/2012	0.84	1.51	24.8	22.4	18.61	0.41	0.61
09/28/2012	0.34	0.9	61.6	45.6	10.31	0.31	0.97
10/27/2012	4.99	0.28	24.5	19.0	14.78	0.47	0.67
03/15/2013	3.91	0.26	22.9	7.2	5.98	0.21	0.38
Average	3.47	1.46	38.5	24.5	13.11	0.36	0.80
mus	1.58	0.76	17.9	12.9	•••		

- Ejecta: error 1.46 hrs, rms 0.76 hrs
- Shock Front: error 3.47 hrs, rms 1.58 hrs
- Drag coefficient is chosen as Cd = 1.35 for all events
- density ratio varies from 3 to 33

A "Fair" Comparison

A Comparison of the Error in Hours between Our Method and the ESA and DBM Models for Each Event ICME Date Constrained Drag Model ESA Static DBM 04/05/2010 -11.6-14.0-1.8910.6 05/24/2010 -5.697.91 09/14/2011 -11.5-6.00-6.6807/12/2012 0.84 17.42.8809/28/2012 -0.3432.9 22.5 10/27/2012 2.11-4.99-3.7003/15/2013 3.91 8.00 -1.453.47 13.278.5 Average 1.58 6.04 4.20rms

Table 3

- In blue: our improved DBM model (Hess & Zhang 2015)
- In green: Empirical Shock Arrival model (ESA) (Gopalswamy et al. 2013)
- In red: Static Drag-based Model (DMB) (Vrsnak et al. 2014)

Correction to the drag model

- The drag number \mathbf{Y} is not constant
- The drag coefficient Cd is a constant (=1.35)
- One un-constrained free parameter: initial density ratio

$$a(t) = -\gamma (V(t) - V_{sw}) |V(t) - V_{sw}|$$

$$\gamma = \frac{C_d A \rho_{sw}}{M + M_v} = \frac{C_d}{r(\frac{\rho}{\rho_{sw}} + \frac{1}{2})}$$

Assuming: $\rho = \rho_0 \frac{r_0^3}{\rho_{sw}} : \rho_0 = \rho_0$

Assuming:
$$\rho = \rho_0 \frac{r_0^3}{r^3}$$
; $\rho_{sw} = \rho_{sw0} \frac{R_0^3}{R^3}$

$$\gamma = \frac{C_d}{\frac{\rho_0}{\rho_{sw0}}\kappa R_0 + \frac{\kappa R}{2}}$$

Correction to the geometry

- The distances to the Sun of the nose is different from that of the interception point
- The shape of CME ejecta and shock is not exactly a GCS

$$h_{final} = 0.65h_{nose} + 0.35h_{Earth}$$

Predict Flare/CME Onset

(Barnes, Leka et al. 2016, and references therein) "For M-class flares and above, the set of methods tends towards a weakly positive skill score, with no participating method proving substantially better than climatological forecasts."

Parameter/	Statistical	C1.0+	, 24 hr	M1.0+	, 12 hr	M5.0+	, 12 hr
Method	Method	ApSS	BSS	ApSS	BSS	ApSS	BSS
B _{eff}	Bayesian	0.12	0.06	0.00	0.03	0.00	0.02
ASAP	Machine	0.25	0.30	0.01	-0.01	0.00	-0.84
BBSO	Machine	0.08	0.10	0.03	0.06	0.00	-0.01
WL_{SG2}	Curve fitting	N/A	N/A	0.04	0.06	0.00	0.02
NWRA MAG 2-VAR	NPDA	0.24	0.32	0.04	0.13	0.00	0.06
$\log(\mathcal{R})$	NPDA	0.17	0.22	0.01	0.10	0.02	0.04
GCD	NPDA	0.02	0.07	0.00	0.03	0.00	0.02
NWRA MCT 2-VAR	NPDA	0.23	0.28	0.05	0.14	0.00	0.06
SMART2	CCNN	0.24	-0.12	0.01	-4.31	0.00	-11.2
Event Statistics, 10 prior	Bayesian	0.13	0.04	0.01	0.10	0.01	0.00
McIntosh	Poisson	0.15	0.07	0.00	-0.06	N/A	N/A

Table 4. Performance on All Data with Reference Forecast

So, the State-of-the-Art:

- The prediction of CME Time of Arrival at the Earth has improved significantly in the last decade, thanks to STEREO observations, development in theory and numerical simulation
- The prediction of geomagnetic storm intensity of arrival CMEs remains to be poor and challenging.
- The prediction of CME/flare onset remains to be none or very poor

How to improve?

- Multiple observations from space to achieve the global 3D measurement, i.e, L3, L5 missions
- Direct measurement of magnetic field in the corona, in additional to photospheric and chromospheric measurements
- Improve theory-based empirical modeling
- Integrate Sun-to-Earth numerical simulation with improved ambient solar wind modeling
- Data assimilation approach, integrating theory, observation, and simulation in real time

The End

Sun-to-Earth Event: An Example

2012 July 12 - 14 STE event (Dudik et al. 2014; Cheng et al. 2014; Moestl et al. 2014; Hess & Zhang 2014; Shen et al. 2014; Hu et al. 2016)

•07:12 14:50 UT: Pre-flare brightening	- 0 hr 47 min
•07/12 15:37 UT: Flare onset	0 hr
•07/12 16:49 UT: Flare peak (X1.4, S17W08, AR11520)	1 hr 12 min
•07/12 16:48 UT: CME first appearing in C2	1 hr 11 min
•07/12 18:54 UT: CME at 20 Rs	3 hr 17 min
•07/13 00:49 UT: CME at 50 Rs	9 hr 12 min
•07/13 06:49 UT: CME at 80 Rs	15 hr
•07/14 17:00 UT: Shock arrival at 1 AU	49 hr
•07/15 06:00 UT: Magnetic Cloud arrival at 1 AU	62 hr
•07/15 19:00 UT: Peak time of Dst (-127 nT)	75 hr
•07/17 14:00 UT: Magnetic Cloud end at 1 AU	118 hr

Predict Intensity of Geomagnetic Storms?

The status is very poor, It is challenging!

- can not predict Bz
- No direct observation of coronal magnetic field
- CME deflection near the Sun
- CME deflection in the interplanetary space
- CME interaction with CIR
- CME interaction with CME
- "stealth" CMEs, silent CMEs
- Problem ICMEs

True Velocity: Shock and Ejecta

Drag model: shock front (not an optimal one) (Hess & Zhang 2014)
Drag model: ejecta front