# Development of a Daily Solar Major Flare Occurrence Probability Model Based on Vector Parameters from SDO/HMI

Daye Lim<sup>1</sup>, Yong–Jae Moon<sup>1,2</sup>, Jongyeob Park<sup>3</sup>, Kangjin Lee<sup>1,4</sup>, and Jin–Yi Lee<sup>2</sup>

<sup>1</sup>School of Space Research, Kyung Hee University, Korea
<sup>2</sup>Department of Astronomy & Space Science, Kyung Hee University, Korea
<sup>3</sup>Korea Astronomy and Space Science Institute, Korea
<sup>4</sup>Electronics and Telecommunication Research Institute, Korea

# **Solar Active Regions**



 Solar active regions are areas of intense and complex magnetic field.

 Most solar energetic events such as solar flares blast forth from active regions.

## **Previous Flare Forecasting Studies Based on Photospheric Magnetic Fields**



McIntosh (1990)

Falconer et al. (2011)

Leka and Barnes (2003a)

Observed solar flares well correlate with the size and non-potentiality of active regions.

#### **Empirical Relationship between Flare Occurrence Rates and Magnetic Parameters**

Proxy of active-region free magnetic energy

<sup>L</sup>WL<sub>SG</sub> = 
$$\int |\nabla_{\perp} B_{\rm los}| dl$$

This parameter is the weighted length of the strong-gradient neutral line obtained by integrating the gradients of the **line-of-sight magnetic field** along the neutral lines.



### Solar Dynamics Observatory's Helioseismic and Magnetic Imager



Vector magnetic field



Line-of-sight magnetogram

#### HMI Active Region Patch (HARP) and Space-Weather HMI Active Region Patch (SHARP)



- HARPs are automatically identified magnetic structures at the size scale of a solar active region.
- A HARP may include zero, one, or multiple NOAA active regions.
- SHARPs provide several parameters that characterize the magnetic field distribution and its deviation from a potential field.
- SHARP parameters are calculated per patch and are available on a twelve-minute cadence.

#### Relationship between Major Flare Occurrence Rates and Vector Magnetic Parameters

 Among the SHARP parameters, we consider six SHARP vector magnetic parameters with high F-scores as useful predictors of flaring activity from Bobra and Couvidat (2015).

| Keyword | Description                                         | Formula                                                                                               |  |
|---------|-----------------------------------------------------|-------------------------------------------------------------------------------------------------------|--|
| TOTUSJH | Total unsigned current helicity                     | $H_{C_{\text{total}}} \propto \sum  B_z J_z $                                                         |  |
| ΤΟΤΡΟΤ  | Total photospheric magnetic free energy density     | $ \rho_{tot} \propto \sum (\boldsymbol{B}^{\text{Obs}} - \boldsymbol{B}^{\text{Pot}})^2 dA $          |  |
| TOTUSJZ | Total unsigned vertical current                     | $J_{z_{\text{total}}} = \sum  J_z  dA$                                                                |  |
| ABSNJZH | Absolute value of the net current helicity          | $H_{C_{\rm abs}} \propto  \sum B_z J_z $                                                              |  |
| SAVNCPP | Sum of the net current emanating from each polarity | $J_{z_{sum}} \propto \left  \sum_{z}^{B_z^+} J_z dA \right  + \left  \sum_{z}^{B_z^-} J_z dA \right $ |  |
| USFLUX  | Total unsigned magnetic flux                        | $\Phi = \sum  B_z  dA$                                                                                |  |

• We use hourly SHARP parameters when longitudes of HARPs are within  $\pm$  60 heliographic degrees of disk center from May 2010 to April 2017.

|      | Training set (70%)                                         |                 | Test set (30%)                       |      |
|------|------------------------------------------------------------|-----------------|--------------------------------------|------|
| 05/2 | 03/2015<br>10 05/20                                        |                 |                                      | 2017 |
|      | Training data (70%)                                        | Test data (30%) |                                      |      |
|      | From May 2010 to March 2015                                | • From N        | March 2015 to April 2017             |      |
|      | • 251431 HARPs                                             | • 10775         | 7 HARPs                              |      |
|      | <ul> <li>350 M-class and 23 X-class flares from</li> </ul> | • 73 M-c        | lass and 1 X-class flares from LMSAL |      |
|      | LMSAL GOES SXR flare list                                  | GOES            | SXR flare list                       |      |

 Training data are divided into 100 groups having equal number for reasonable statistics per group.

• We use hourly SHARP parameters when longitudes of HARPs are within  $\pm$  60 heliographic degrees of disk center from May 2010 to April 2017.



 Training data are divided into 100 groups having equal number for reasonable statistics per group.

• We use hourly SHARP parameters when longitudes of HARPs are within  $\pm$  60 heliographic degrees of disk center from May 2010 to April 2017.



 Training data for each SHARP parameter are divided into 100 groups having equal number for reasonable statistics per group.

# **Forecast Validation**

#### <Probabilistic Forecasts>

#### <Yes/No Forecasts>

- The probability of observing one or more flares in any 24 hr interval is
   P<sub>µ</sub>(N ≥ 1) = 1 − exp(−µ),
   where µ is the average flare rate.
- Reliability plot



Contingency table

|          | Forecast             |                      |  |  |
|----------|----------------------|----------------------|--|--|
| Observed | Flare                | No flare             |  |  |
| Yes      | True Positives (TP)  | False Negatives (FN) |  |  |
| No       | False Positives (FP) | True Negatives (TN)  |  |  |

True skill statistic (TSS)

$$TSS = \frac{TP}{TP + FN} - \frac{FP}{FP + TN}$$

TSS = 1 for perfect forecasts

• Bloomfield *et al.* (2012) found that for the Poisson method, **the best TSS** is typically produced by picking a threshold that depends on the ratio FN/FP, with **FN/FP**  $\approx N_{event}/N_{no event}$ .

## **Major Flare Occurrence Rates**



## **Major Flare Occurrence Rates**



## **Reliability Plot**





## **Reliability Plot (Randomly Selected Data)**



# True Skill Statistic (TSS) Comparison

| Ref                               | erence                         | Data                       | Forecast                              | Method                                                 | Period                    | Training/Test              | TSS  |
|-----------------------------------|--------------------------------|----------------------------|---------------------------------------|--------------------------------------------------------|---------------------------|----------------------------|------|
| Bloom<br>(2                       | nfield <i>et al</i> .<br>2012) | McIntosh<br>Classification | Probability                           | Historical Poisson<br>Statistic                        | Dec 1988 ~ Dec 2010       | Chronological<br>Selection | 0.54 |
| Bobra and<br>Couvidat (2015)      |                                |                            | Yes/No                                | Support Vector<br>Machine                              | May 2010 ~ May 2014       | Random Selection           | 0.76 |
| Nishizuka <i>et al.</i><br>(2017) |                                | SDO/HMI                    | Yes/No                                | K-Nearest Neighbor<br>+ UV Emission +<br>Flare History | June 2010 ~ December 2015 | Random Selection           | 0.91 |
| Liu <i>et al</i> . (2017)         |                                |                            | Multi class                           | Random Forest                                          | May 2010 ~ December 2016  | Random Selection           | 0.53 |
| This<br>work                      | TOTUSJH                        |                            | Probability Empirical<br>Relationship | Empirical<br>Relationship                              | May 2010 ~ April 2017     | Chronological<br>Selection | 0.81 |
|                                   | TOTUSJZ                        |                            |                                       |                                                        |                           |                            | 0.8  |
|                                   | USFLUX                         |                            |                                       |                                                        |                           | 0.79                       |      |

# Conclusion

- The major flare occurrence rates (M- and X-class) are well correlated with six SHARP magnetic parameters.
- The occurrence rate ranges from 0.001 to 1 for M- and X-class flares.
- The slopes between the logarithmic values of six magnetic parameters and flaring rates tend to decrease as the values of parameters increase.
- The test shows that the total photospheric magnetic free energy density gives the minimum RMS error between observed flare rates and predicted ones.
- Among six parameters, the total unsigned current helicity, the total unsigned vertical current, and the total unsigned magnetic flux have higher TSS values than the other parameters.