# Key Problems in the forecasting of the geoeffectiveness of CMEs

Chenglong Shen, Yuming Wang, Bin Zhuang,

Kai Liu, Yutian Chi, Mengjiao Xu,

CAS Key Laboratory of Geospace Environment, School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, China

#### Sun-Earth connection of a CME event



## **Key Problems**

Main questions:

> Whether the CME will arrival at the Earth?

When the CME arrival at the Earth?

What is the intensity of the geomagnetic storm?

Have to know first:

The 3 dimensional kinematic and geometrical

parameters of CMEs → Whether and When?

➤ The south component of the magnetic field when the CME arrival at 1AU → What?

## 1. How to obtain the 3D parameters of CMEs?



#### **Projected Observations**

#### Projection Effect? [e.g.

Vršnak et al., 2007; Howard et al., 2008; Temmer et al., 2009; Shen et al., 2013; Jang et al., 2016]

Useful models? [e.g. Zhao,

2002; Michanek et al., 2003 ;Xie et al., 2004; Xue et al., 2005; Na et al., 2017]

#### **3 Dimensional Parameters**

### **Cone Models**

# Different cone models have been developed by different authors!

 $\leftarrow 2R \rightarrow$ 

**SUN** 

r

¥ Vx2

 $\alpha/2I$ 

X

→ Vx1



Cone Model (Circle) [Zhao, 2002; Xie et al., 2004] Cone Model (Ellipse) [Michalek et al., 2003]



Ice Cream Cone Model [Xue et al., 2005; Na et al., 2017]

## **STEREO Period**

#### **CMEs can be seen from multiples points!**

Different models have been developed:

- Harmonic Mean(H-M) method [Lugaz et al., 2009; 2010]
- Triangulation method [Liu et al., 2010]
- GCS model [Thernisien et al.,
  2009; Thernisien, 2011]
- Polarization method [Moran and Davila, 2004]
- Mask fitting method [Feng

et al., 2012]



#### But, STEREO is not always there!

## **STEREO Period**



observations

**Evaluate the Models** 

|           | Group I | Group I | Group III | Total |
|-----------|---------|---------|-----------|-------|
| Frontside | 37      | 2       | 9         | 48    |
| Backside  | 29      | 1       | 8         | 38    |
| Total     | 66      | 3       | 17        | 86    |

Group I: Can be fitted by the GCS model. Group II: Can be fitted by the GCS model. But, No v<sub>CDAW</sub> is obtained due to points less than 3.

Group III: Cannot be fitted by the GCS mode



#### **Projection Effect of Full Halo CMEs**



The projection effect is not obvious for [Shen et al., 2013]:

Fast CMEs (V > 900km/s)

> Limb CMEs with  $\varepsilon$  > 45°



2D speeds underestimate the 3D speed by about 20%

#### Comparison of the parameter obtained by GCS model and Cone model (Automatic analysis) [Zhuang et al., 2017]



Velocities and longitude are consistent well
 Latitude and angular width show some different

# 2. Which CMEs can hit the Earth?





# Ratios of the front side halo CMEs with geoeffectiveness varied from 45% to 71%.

[e.g.,Webb, 2002;Wang et al., 2002; Zhao and Webb, 2003; Zhang et al., 2007; Gopalswamy et al., 2007; Shen et al., 2014;Hess and Zhang, 2017]

### **Possible Criteria**

#### 27 (56%) front side full halo CMEs hit the Earth



#### Central events

- ▷ [E40, W40] (72%) ▷ ε < 45° (75%)</p>
- Large events
  > ω>2ε (74%)

[e.g. Shen et al., 2014]

## CMEs from which hemisphere can easy hit the Earth?





#### CMEs from west hemisphere can hit the Earth with higher possibility

[e.g. Wang et al., 2002; Zhang et al., 2003; Shen et al., 2014; Hess & Zhang et al., 2017]

- Before April 2012, 71.4% of events come from the northern hemisphere
- After April 2012, 73.8% of the events come from the southern hemisphere

## **An Influence Factor: CME Deflection**

# Deflection make a Not-Earth direct CME hit the Earth



# Deflection make a Earth direct CME miss the Earth



#### Three types of deflection:

- Deflection near the Sun [MacQueen et al. 1986; Gopalswamy et al., 2003, 2004, 2009; Cremades and Bothmer, 2004; Cremades et al., 2006; Kilpua et al. 2009; Shen et al. 2011; Wang et al., 2011; Kay et al., 2013, 2015a,b;2016;2017a.b]
- Deflection in the interplanetary Space [e.g. Wang et al. 2004; 2006; 2014; Zhang et al., 2017]
- Deflection caused by CME interaction [e.g. Lugaz et al. 2012; Shen et al. 2012; Temmer et al., 2012; Liu et al. 2012, 2014a; Mishra et al., 2015, 2016, 2017 ]

#### **Deflection Near the Sun**



 $\delta\theta = 0.5(\theta_{i1} + \theta_{i2}) - 0.5 \ (\theta_{01} + \theta_{02})$ 

 $\delta\theta$  >0: Deflect to Equator  $\delta\theta$  <0: Deflect to Polar

# CMEs are likely to deflect to Equator!

#### **Magnetic Energy Density Models**

#### Deflection of 2007 October 8 CMEs [Shen et al., 2011]



#### This CME deflected to the Equator obviously!

#### Physical model to describe such deflection [Shen et al., 2011]



CME may deflect to the region with lower magnetic energy density!

### **Magnetic Energy Density Gradient Models**

#### Statistical analysis [Gui et al., 2011]





# Observed deflection directions are well consistent with the model.

Observed deflection rates are consistent with the intensity of magnetic energy density gradient.

#### Forecasting a CME's Altered Trajectory (ForeCAT)



Now, it is ForeCAT In situ Data Observer (FIDO) model [Kay et al., 2017b] which can predicting the in situ magnetic field of CMEs.

## **Deflection in Interplanetary Space**



Wang et al, 2002

#### The source region of Earth-Arrived CMEs show obvious East-West asymmetry

[e.g. Wang et al., 2002; Zhang et al., 2003; Shen et al., 2014; Hess & Zhang 2017]



# CME may deflect during its propagation in interplanetary

Space [e.g. Wang et al, 2004]

# **Deflection in interplanetary space (DIPS)**

Deflection of CME in interplanetary space might bes controlled by the background solar wind [Wang et al. 2004].



Fast CME  $(v > v_{sw}) \rightarrow East$ Slow CME  $(v < v_{sw}) \leftarrow West$ 

## Direct evidence of CME's deflection [Wang et al., 2014]



Propagation Direction: N00E32 Longitudinal extent of the CME in the ecliptic plane: 60°



#### Direct evidence of CME's deflection [Wang et al., 2014]



The deflection of this CME make this STBdirect CME hit the Earth [Wang et al., 2014]!

#### Integrated CME-arrival forecasting (iCAF) [Zhuang et al., 2017]



### **Deflection caused by CME interaction**





Interaction between two objects can change their propagation direction.

### **Deflection caused by CME interaction**



CME interaction will change their propagation direction [e.g., Lugaz et al. 2012; Shen et al. 2012; Temmer et al., 2012; Liu et al. 2012, 2014a; Mishira et al., 2015,2017 and Some review papers: Manchester et al., 2017; Shen F. et al., 2017; Lugaz et al., 2017]

| Table 1 | The pa    | rameters o      | of the two C       | MEs bef | ore and     | after t | he coll   | ision.       |                    |       |                         |                          |              |                  |     |
|---------|-----------|-----------------|--------------------|---------|-------------|---------|-----------|--------------|--------------------|-------|-------------------------|--------------------------|--------------|------------------|-----|
|         | Param     | eters derive    | d from obser       | vations |             |         |           |              |                    |       |                         |                          |              |                  |     |
|         | θ         | φ               | vc                 | ve      |             |         |           |              |                    |       |                         |                          |              |                  |     |
| CME1    | 6±2       | $28\pm10$       | 243 <sup>+25</sup> | 43+16   |             |         |           |              |                    |       |                         |                          |              |                  |     |
| CME2    | $16\pm 2$ | 8±10            | 407_74             | 74+65   |             |         |           |              |                    |       |                         |                          |              |                  |     |
|         |           |                 |                    |         |             | Secon   | d-level o | derived      | parame             | eters |                         |                          |              |                  |     |
|         | vp        | v <sub>ep</sub> | θς                 | φc      | $v_{\perp}$ | vI      | $v_1'$    | $v_{\rm c}'$ | $v_{\rm p}^\prime$ | v'ep  | $\Delta \theta_{\rm v}$ | $\Delta \varphi_{\rm v}$ | $\Delta E/E$ | $\Delta E_t/E_t$ | e   |
| CME1    | 241       | 36              |                    |         | 130         | 205     | 288       | 316          | 316                | 41    | -4                      | 7                        | 68%          |                  |     |
| CME2    | 392       | 26              | -10                | 57      | 332         | 237     | 116       | 351          | 325                | N/A*  | 6                       | -16                      | -25%         | 6.6%             | 5.4 |

### **Deflection caused by CME interaction**



Deflection caused by CME interaction make CME1 fact to Earth and the hit the Earth [Lugaz et al., 2012]



#### **Possible Influence Parameters:**

- ➢ Initial velocity → Empirical models
- > CME interaction [e.g. Gopalswamy et

al., 2001; Shen et al., 2012; Temmer et al.,

2012, Lugaz et al., 2013; Mishra et al., 2016]

#### Any other factors?

## **Empirical models**





The ECA model: consistent acceleration model [Gopalswamy et al. 2000; 2001]

a = 1.41 - 0.0035u

u: initial velocity

$$S = ut - 1/2at^2$$
 S=1AU

Drag-based model (DBM) is based on the assumption that the dynamics of CMEs is dominated by the MHD 'aerodynamic' drag

**Drag acceleration:** 

$$a = -\gamma(\nu - \nu_{sw})|\nu - \nu_{sw}|$$
$$\gamma = \frac{c_d A \rho_w}{V(\rho + \frac{\rho_w}{2})} = \frac{c_d}{L(\frac{\rho}{\rho_w} + \frac{1}{2})}$$

e.g. Cargill, 1996, 2004; Vršnak et al. 2013; Hess & Zhang, 2014, 2015

#### Simple form:

$$a = -Cr^{-\frac{1}{2}}(v - v_{sw})|v - v_{sw}|$$

Maloney & Gallagher, 2010; Vršnak & Gopalswamy, 2002



Vršnak et al., 2013

Hess & Zhang, 2015

#### What is the value of $c_d$ (or C in simple form)?

c<sub>d</sub>: 1 to 1.5 [e.g. Poomvises 2010 ; Subramanian et al. 2012]

#### Influence of the propagation direction and angular width



True angular width and the propagation direction are all important parameters in the CME arrival time forecasting [e.g. Möstl el et.2013; Shen et al., 2014]

#### 4. The 2017 September events : Active region 12673



# Produced 83 flares during its pass through the front of the Sun



# **Produced** the top 2 flares of solar cycle 24

#### Top 50 solar flares

On this page you will find an overview of the strongest solar flares since June 1996 together with links to more information in our a and a video (if available) of the event. This page is updated daily.

| Solar |       | year 👻     |        |       |         |       |                      |
|-------|-------|------------|--------|-------|---------|-------|----------------------|
|       |       |            | Region | Start | Maximum | End   |                      |
| 1     | X28.0 | 2003/11/04 | 0486   | 19:29 | 19:53   | 20:06 | O Movie View archive |
| 2     | X20.0 | 2001/04/02 | 9393   | 21:32 | 21:51   | 22:03 | O Movie View archive |
| 3     | X17.2 | 2003/10/28 | 0486   | 09:51 | 11:10   | 11:24 | O Movie View archive |
| 4     | X17.0 | 2005/09/07 | 0808   | 17:17 | 17:40   | 18:03 | O Movie View archive |
| 5     | X14.4 | 2001/04/15 | 9415   | 13:19 | 13:50   | 13:55 | O Movie View archive |
| 6     | X10.0 | 2003/10/29 | 0486   | 20:37 | 20:49   | 21:01 | O Movie View archive |
| 7     | X9.4  | 1997/11/06 | 8100   | 11:49 | 11:55   | 12:01 | O Movie View archive |
| 8     | X9.3  | 2017/09/06 | 2673   | 11:53 | 12:02   | 12:10 | View archive         |
| 9     | X9.0  | 2006/12/05 | 0930   | 10:18 | 10:35   | 10:45 | O Movie View archive |
| 10    | X8.3  | 2003/11/02 | 0486   | 17:03 | 17:25   | 17:39 | Movie View archive   |
| 11    | X8.2  | 2017/09/10 | 0      | 15:35 | 16:06   | 16:31 | View archive         |
| 12    | X7.1  | 2005/01/20 | 0720   | 06:36 | 07:01   | 07:26 | O Movie View archive |
| 13    | X6.9  | 2011/08/09 | 1263   | 07:48 | 08:05   | 08:08 | O Movie View archive |
| 14    | X6.5  | 2006/12/06 | 0930   | 18:29 | 18:47   | 19:00 | O Movie View archive |
| 15    | X6.2  | 2005/09/09 | 0808   | 19:13 | 20:04   | 20:36 | O Movie View archive |

## **Coronagraph observations**

#### At least 20 CMEs erupted from this active region.



#### What is the geoeffectiveness of these CMEs?

# Three major halo CMEs during this period



| Νο | CME Time      |
|----|---------------|
| 1  | Sep. 4 20:36  |
| 2  | Sep. 6 12:24  |
| 3  | Sep. 10 16:00 |





### **Cone model Parameters of CMEs**

|    |               | Projected       | Cone Model     |       |           |       |  |  |  |  |
|----|---------------|-----------------|----------------|-------|-----------|-------|--|--|--|--|
| ΝΟ | CME Time      | Velocity(km/s)* | Velocity(km/s) | ω (°) | Direction | ε (°) |  |  |  |  |
| 1  | Sep. 4 20:36  | 1758            | 1250           | 63    | W04S13    | 14    |  |  |  |  |
| 2  | Sep. 6 12:24  | 1429            | 1410           | 76    | W13S19    | 23    |  |  |  |  |
| 3  | Sep. 10 16:00 | 3288            | 2150           | 87    | W36N04    | 36    |  |  |  |  |

\*Projected velocities are from SOHO/Halo CME alert

Fitting result of the Sep. 6 CME





#### **In-situ observations**



## **Sun-Earth connection**

| No |               | CMEs           |       | ICMEs     |       |               |              |               |  |
|----|---------------|----------------|-------|-----------|-------|---------------|--------------|---------------|--|
| NU | Time          | Velocity(km/s) | ω (°) | Direction | ε (°) | Shock Time    | Begin Time   | End Time      |  |
| 1  | Sep. 4 20:36  | 1250           | 63    | W04S13    | 14    | Sep. 6 23:14  | Sep. 7 07:00 | Sep. 07 11:30 |  |
|    | Sep. 5 18:00  | ?              | ?     | ?         | ?     |               | Sep. 7 17:05 | Sep.8 01:28   |  |
| 2  | Sep. 6 12:24  | 1190           | 107   | W13S18    | 22    | Sep. 7 22:29  | Sep. 8 11:20 | Sep. 8 17:38  |  |
| 3  | Sep. 10 16:00 | 2190           | 86    | W37N04    | 37    | Sep. 12 19:26 |              |               |  |



#### The interplanetary source of the geomagnetic storm



#### A geomagnetic storm with Dst<sub>min</sub>=-142 nT is caused by the Shock-ICME complex structure



Shock-ICME complex structure can produce the geomagnetic storm especially the intense geomagnetic storm with higher probability [e.g. Wang et al., 2003a,b; Lugaz et al., 2015; Shen et al., 2017].

## If without shock compression ICME?



A method based on the R-H relation has been developed to get the possible parameters of CMEs without shock compression [Wang et al., 2017, Under Review]



Observed  $B_{z,min}$  in this CME: -33 nT (Dst=-142 nT) Reconstructed  $B_{z,min}$  with out compression in this CME : -21 nT (Dst = -95 nT)

## **Forecasting Model Calculation**



# Different Dst forecasting models are applied.

- Forecasting value of Dst<sub>min</sub> based on real time solar wind observation is lower than the observed of Dst<sub>min</sub>.
- Without comparison, the of Dst<sub>min</sub>
  would be larger and the peak time
  would be later(comparison between
  blue and red lines)

Shock-compression is very important. It should be taken in to account in the forecasting of geomagnetic storm caused by CME.

## **Enhancement of the proton flux in Shock-ICME**



## **Enhancement of the proton flux in Shock-ICME**



Proton flux enhancement in Shock-ICME structure is an important factor in causing the largest SEP event in solar cycle 23 [Shen et al., 2008].



# 5. Summary

Following key problems are discussed:

- 1. How to get 3 Dimensional parameters of CMEs?
- 2. Whether the CME will hit the Earth? What are the influence parameters?
- 3. When the CME will hit the Earth? What are the

influence parameters?

The Sun-Earth connection of 2017 September events are discussed.

### Full halo CME catalogue with GCS model parameters and in-situ observations in USTC

#### http://space.ustc.edu.cn/dreams/fhcmes/

| No                                  | CME date                                       | Direction      | E         | Width      | v <sub>GCS</sub> | v <sub>CDAW</sub> | T <sub>Shock</sub>      | T <sub>ICME Begin</sub> | T <sub>ICME End</sub> |
|-------------------------------------|------------------------------------------------|----------------|-----------|------------|------------------|-------------------|-------------------------|-------------------------|-----------------------|
| 1                                   | 2009/12/16 04:30:03                            | <u>E6,N9</u>   | <u>10</u> | <u>45</u>  | <u>411(14)</u>   | <u>208</u>        |                         | 2009/12/19 09:49        | 2009/12/20 09:22      |
| 2                                   | 2010/02/07 03:54:03                            | <u>E6,87</u>   | <u>9</u>  | <u>81</u>  | <u>481(25)</u>   | <u>398</u>        | 2010/02/11 00:00        | 2010/02/11 13:00        | 2010/02/11 22:00      |
| 3                                   | 2010/02/12 13:42:04                            | <u>E1,N11</u>  | <u>11</u> | <u>84</u>  | <u>550(42)</u>   | <u>-2</u>         | 2010/02/15 17:40        | 2010/02/16 04:00        | 2010/02/16 12:00      |
| 4                                   | 2010/04/03 10:33:58                            | <u>E1,S27</u>  | <u>27</u> | <u>84</u>  | <u>853(40)</u>   | <u>629</u>        | <u>2010/04/05 07:56</u> | 2010/04/05 12:00        | 2010/04/06 16:00      |
| 5                                   | 2010/05/23 18:06:05                            | <u>N16,N7</u>  | <u>17</u> | <u>70</u>  | <u>365(28)</u>   | <u>228</u>        | <u>2010/05/28 01:58</u> | <u>2010/05/28 19:00</u> | 2010/05/29 17:00      |
| 6                                   | 2010/05/24 14:06:05                            | <u>W26,S6</u>  | <u>26</u> | <u>63</u>  | <u>552(18)</u>   | <u>436</u>        | <u> </u>                |                         |                       |
| g result of th                      | 2010/08/01 12/12<br>ne 20100403-1033 CME       | E38,N20        | 42        | 93         | <u>1262(78)</u>  | <u>838</u>        | <u>2010/08/03 17:00</u> | 2010/08/04 10:00        | 2010/08/05 02:00      |
| 1) 50H0/EASOO (<br>2010/04/03 11-4) | 23 (c1) 514/95004-0062<br>2000-94-0311154-0001 | <u>E36,S6</u>  | <u>36</u> | <u>83</u>  | <u>779(71)</u>   | <u>880</u>        |                         | 2010/08/11 05:00        | 2010/08/12 17:00      |
| <u></u>                             | ()                                             | <u>W42,S11</u> | <u>43</u> | <u>119</u> | <u>864(10)</u>   | <u>1108</u>       |                         |                         |                       |

Table B: The list of all the frontside full halo CMEs(back to top)



GCS model's fittin

Time Coverage: 2007 to 2012 May (will update to the end of 2016 this year) Related papers: Shen et al., 2013; 2014

# **ICME catalogue in USTC**

#### http://space.ustc.edu.cn/dreams/wind\_icmes/

#### List of Interplanetary Coronal Mass Ejections (ICMEs) [Last updated on 2016 June 16]

|    |                         | Start of the            | End of the              |    |           |                        | Mean Vo                      | lues in t   | he Ejecta                               |                                       |                                       |           | М                      | ean Values                   | in the S    | heath Reg                               | jion                                  |                                       |                | Group  |                   | 2 Dst Peak              |                    | <u>Group</u><br><u>Figures</u> |
|----|-------------------------|-------------------------|-------------------------|----|-----------|------------------------|------------------------------|-------------|-----------------------------------------|---------------------------------------|---------------------------------------|-----------|------------------------|------------------------------|-------------|-----------------------------------------|---------------------------------------|---------------------------------------|----------------|--------|-------------------|-------------------------|--------------------|--------------------------------|
| No | Shock Time              | Ejecta                  | Ejecta                  | мс | B<br>(nT) | B <sub>s</sub><br>(nT) | Duration<br>of Bs<br>(hours) | v<br>(km/s) | v <sub>x</sub> B <sub>s</sub><br>(mV/m) | Т <sub>р</sub><br>(10 <sup>5</sup> К) | N <sub>p</sub><br>(cm <sup>-3</sup> ) | B<br>(nT) | B <sub>s</sub><br>(nT) | Duration<br>of Bs<br>(hours) | v<br>(km/s) | v <sub>x</sub> B <sub>s</sub><br>(mV/m) | T <sub>p</sub><br>(10 <sup>5</sup> K) | N <sub>p</sub><br>(cm <sup>-3</sup> ) | <u>Figures</u> | Number | Type <sup>2</sup> | Time                    | Dst <sub>min</sub> |                                |
| 1  |                         | 1995-02-<br>08T03:34:17 | 1995-02-<br>08T21:00:00 | Y  | 11.75     | -6.74                  | 10.83                        | 411.58      | 2873.65                                 | 0.33                                  | 7.68                                  |           |                        |                              |             |                                         |                                       |                                       | MAGSWE;EPF     | 1      | Ī                 | 1995-02-<br>08T10:00:00 | -80                | MAGSWE;EPF                     |
| 2  |                         | 1995-02-<br>09T07:16:30 | 1995-02-<br>10T03:59:59 | N  | 7.31      | 0.00                   | 0.00                         | 363.37      | 0.00                                    | 0.24                                  | 7.36                                  |           |                        |                              |             |                                         |                                       |                                       | MAGSWE;EPF     | 2      | Ī                 |                         |                    | MAGSWE;EPF                     |
| 3  | 1995-03-<br>04T00:38:34 | 1995-03-<br>04T11:42:51 | 1995-03-<br>05T00:08:34 | Y  | 11.41     | -6.88                  | 11.95                        | 446.85      | 3067.96                                 | 0.22                                  | 9.45                                  | 6.92      | -0.98                  | 3.97                         | 434.59      | 419.26                                  | 0.77                                  | 16.13                                 | MAGSWE;EPF     | 3      | Ī                 | 1995-03-<br>04T22:00:00 | -90                | MAGSWE;EPF                     |
| 4  | 1995-03-<br>23T09:45:00 | 1995-03-<br>23T22:10:42 | 1995-03-<br>24T16:10:42 | N  | 8.96      | -0.99                  | 1.68                         | 332.55      | 343.34                                  | 0.27                                  | 16.81                                 | 8.71      | -3.53                  | 4.43                         | 337.69      | 1188.92                                 | 0.51                                  | 20.92                                 | MAGSWE;EPF     | 4      | Ī                 |                         |                    | MAGSWE;EPF                     |
| 5  |                         | 1995-04-<br>01T16:34:17 | 1995-04-<br>02T05:42:51 | N  | 8.94      | -6.61                  | 10.80                        | 382.95      | 2562.98                                 | 0.21                                  | 7.56                                  |           |                        |                              |             |                                         |                                       |                                       | MAGSWE;EPF     | 5      | Ī                 | 1995-04-<br>02T06:00:00 | -67                | MAGSWE;EPF                     |
| 6  |                         | 1995-04-<br>03T13:00:00 | 1995-04-<br>04T12:51:25 | Y  | 8.92      | -1.70                  | 7.40                         | 293.93      | 456.66                                  | 0.26                                  | 3.36                                  |           |                        |                              |             |                                         |                                       |                                       | MAGSWE;EPF     | 6      | Ī                 |                         |                    | MAGSWE;EPF                     |

#### Data Usage: WIND observations

#### Time Coverage: 1995 -2015 (Updating to the end of 2016 now)

Related Papers: Chi et al., 2016; Shen et al., 2017

# **CIR catalogue in USTC**

#### http://space.ustc.edu.cn/dreams/cir/ (coming soon)

| Dst Peak Time           | Dst Peak | CIR Begin Time          | CIR End Time            | CIR Mid Time            | If rope | Rope Begin Time         | Rope End Time           |
|-------------------------|----------|-------------------------|-------------------------|-------------------------|---------|-------------------------|-------------------------|
| 2010-01-21T04:00:00.000 | -35      | 2010-01-20T08:53:34.287 | 2010-01-21T08:40:42.862 | 2010-01-20T16:42:51.431 | N       |                         |                         |
| 2010-02-17T23:00:00.000 | -22      | 2010-02-17T10:45:00.019 | 2010-02-19T15:14:59.995 | 2010-02-18T12:45:00.019 | N       |                         |                         |
| 2010-03-01T16:00:00.000 | -3       | 2010-03-01T06:27:51.432 | 2010-03-02T01:23:34.272 | 2010-03-01T17:10:42.855 | Y       | 2010-03-01T10:04:17.146 | 2010-03-01T12:25:42.859 |
| 2010-03-07T07:00:00.000 | -18      | 2010-03-06T18:32:08.574 | 2010-03-07T15:25:42.864 | 2010-03-07T02:47:08.574 | N       |                         |                         |
| 2010-03-11T06:00:00.000 | -30      | 2010-03-08T06:51:25.722 | 2010-03-12T19:17:08.587 | 2010-03-10T03:51:25.738 | N       |                         |                         |
| 2010-03-18T03:00:00.000 | -26      | 2010-03-15T14:15:00.008 | 2010-03-18T01:29:59.983 | 2010-03-16T07:15:00.016 | N       |                         |                         |
| 2010-03-26T12:00:00.000 | -10      | 2010-03-24T17:04:17.144 | 2010-03-26T20:51:25.712 | 2010-03-25T16:49:17.142 | N       |                         |                         |
| 2010-04-15T00:00:00.000 | -36      | 2010-04-14T08:34:17.145 | 2010-04-15T12:25:42.865 | 2010-04-14T22:51:25.718 | N       |                         |                         |
| 2010-05-02T19:00:00.000 | -71      | 2010-05-02T05:15:00.004 | 2010-05-03T10:17:08.562 | 2010-05-02T10:17:08.577 | N       |                         |                         |
| 2010-05-18T11:00:00.000 | -34      | 2010-05-18T05:00:00.011 | 2010-05-20T18:15:00.001 | 2010-05-19T12:30:00.014 | N       |                         |                         |
| 2010-05-30T21:00:00.000 | -58      | 2010-05-29T21:21:25.717 | 2010-06-01T19:42:51.443 | 2010-05-30T15:34:17.162 | N       |                         |                         |
| 2010-06-10T11:00:00.000 | -9       | 2010-06-09T18:00:00.005 | 2010-06-10T09:57:51.435 | 2010-06-10T03:19:17.144 | N       |                         |                         |
| 2010-06-13T22:00:00.000 | -12      | 2010-06-12T18:25:42.860 | 2010-06-14T00:25:42.862 | 2010-06-13T03:32:08.572 | N       |                         |                         |
| 2010-06-16T04:00:00.000 | -36      | 2010-06-15T03:08:34.284 | 2010-06-16T23:25:42.859 | 2010-06-15T09:51:25.715 | N       |                         |                         |
| 2010-06-26T10:00:00.000 | -31      | 2010-06-24T05:45:00.008 | 2010-06-27T10:59:59.988 | 2010-06-26T03:15:00.008 | Y       | 2010-06-25T10:51:25.721 | 2010-06-25T18:08:34.293 |
| 2010-06-29T23:00:00.000 | -24      | 2010-06-29T19:21:25.717 | 2010-06-30T03:00:00.002 | 2010-06-30T00:04:17.149 | N       |                         |                         |
| 2010-07-15T06:00:00.000 | -25      | 2010-07-14T09:38:34.288 | 2010-07-15T08:53:34.287 | 2010-07-14T20:21:25.720 | Y       | 2010-07-14T21:47:08.573 | 2010-07-14T23:30:00.008 |
| 2010-07-28T01:00:00.000 | -31      | 2010-07-26T21:32:08.573 | 2010-07-28T21:44:59.998 | 2010-07-27T01:55:42.863 | N       |                         |                         |
| 2010-08-24T13:00:00.000 | -34      | 2010-08-23T12:51:25.718 | 2010-08-25T04:49:17.142 | 2010-08-24T06:12:51.429 | N       |                         |                         |
| 2010-09-03T02:00:00.000 | -15      | 2010-09-01T18:57:51.430 | 2010-09-03T02:34:17.140 | 2010-09-02T07:04:17.150 | N       |                         |                         |
| 2010-09-06T01:00:00.000 | -16      | 2010-09-05T13:25:42.868 | 2010-09-06T07:59:59.998 | 2010-09-05T21:42:51.436 | Y       | 2010-09-05T21:35:00.000 | 2010-09-06T04:11:15.001 |
| 2010-09-09T13:00:00.000 | -11      | 2010-09-09T08:27:51.431 | 2010-09-09T22:55:42.848 | 2010-09-09T15:32:08.569 | Y       | 2010-09-09T13:34:17.147 | 2010-09-09T16:30:00.000 |
| 2010-09-16T20:00:00.000 | -22      | 2010-09-16T00:34:17.150 | 2010-09-17T05:29:59.988 | 2010-09-16T14:40:42.864 | N       |                         |                         |
| 2010-09-21T07:00:00.000 | -16      | 2010-09-20T18:08:34.299 | 2010-09-21T15:12:51.449 | 2010-09-21T01:06:25.720 | Y       | 2010-09-20T19:38:34.288 | 2010-09-20T21:12:51.432 |
| 2010-09-24T10:00:00.000 | -32      | 2010-09-22T23:34:17.150 | 2010-09-25T12:51:25.702 | 2010-09-23T16:34:17.155 | N       |                         |                         |
| 2010-10-11T20:00:00.000 | -75      | 2010-10-10T09:42:51.430 | 2010-10-12T08:34:17.163 | 2010-10-11T17:42:51.437 | Y       | 2010-10-11T10:04:17.146 | 2010-10-11T11:55:42.854 |
| 2010-10-18T22:00:00.000 | -22      | 2010-10-18T15:49:17.149 | 2010-10-19T23:57:51.419 | 2010-10-19T07:32:08.586 | Y       | 2010-10-19T17:59:59.998 | 2010-10-19T23:47:08.578 |
| 2010-10-23T23:00:00.000 | -41      | 2010-10-22T08:00:00.001 | 2010-10-25T12:59:59.981 | 2010-10-22T19:30:00.006 | N       |                         |                         |
| 2010-11-05T19:00:00.000 | -12      | 2010-11-05T06:25:42.866 | 2010-11-05T18:12:51.426 | 2010-11-05T14:27:51.430 | N       |                         |                         |
| 2010-11-09T05:00:00.000 | -11      | 2010-11-08T06:34:17.152 | 2010-11-09T07:51:25.725 | 2010-11-08T11:51:25.718 | Y       | 2010-11-08T11:42:51.433 | 2010-11-09T03:42:51.428 |
| 2010-11-12T00:00:00.000 | -45      | 2010-11-10T16:17:08.573 | 2010-11-12T09:57:51.429 | 2010-11-11T01:10:42.865 | N       |                         |                         |
| 2010-11-15T00:00:00.000 | -28      | 2010-11-14T01:45:00.006 | 2010-11-16T01:45:00.019 | 2010-11-14T13:00:00.012 | N       |                         |                         |
| 2010-11-19T02:00:00.000 | -17      | 2010-11-18T03:38:34.295 | 2010-11-18T22:23:34.288 | 2010-11-18T11:40:42.867 | Y       | 2010-11-18T04:34:17.145 | 2010-11-18T06:51:25.715 |

#### Data Usage: WIND observations

Time coverage : 2010 – 2016 (to combine with Lan Jian's catalogue

from 1995 to 2009)

## **Related Papers**

- Chi, Y., Shen, C., Wang, Y., Ye, P., Xu, M., Ye, P., & Wang, S. (2016). Statistical Study of the Interplanetary Coronal Mass Ejections from 1995 to 2015. *Solar Physics*, *291*(8), 2419–2439. https://doi.org/10.1007/s11207-016-0971-5
- Gui, B., Shen, C., Wang, Y., Ye, P., & Wang, S. (2011). Quantitative Analysis of CME Deflections in the Corona. Solar Physics, 271, 111–139.
- Shen, C., Chi, Y., Wang, Y., Xu, M., & Wang, S. (2017). Statistical comparison of the ICME's geoeffectiveness of different types and different solar phases from 1995 to 2014. *Journal of Geophysical Research: Space Physics*, 5931–5948. https://doi.org/10.1002/2016JA023768
- Shen, C., Wang, Y., Gui, B., Ye, P., & Wang, S. (2011). Kinematic Evolution of a Slow CME in Corona Viewed by STEREO-B on 8 October 2007. *Solar Physics*, 269(2), 389–400. Retrieved from http://adsabs.harvard.edu/cgi-bin/nph-data\_query?bibcode=2011SoPh..269..389S&link\_type=ABSTRACT
- Shen, C., Wang, Y., Pan, Z., Miao, B., Ye, P., & Wang, S. (2014). Full-halo coronal mass ejections : Arrival at the Earth. *Journal of Geophysical Research : Space Physics*, DOI:10.1002/2014JA020001. https://doi.org/10.1002/2014JA020001.Received
- Shen, C., Wang, Y., Pan, Z., Zhang, M., Ye, P., & Wang, S. (2013). Full halo coronal mass ejections: Do we need to correct the projection effect in terms of velocity? *Journal of Geophysical Research: Space Physics*, 118, 6858–6865. https://doi.org/10.1002/2013JA018872
- Shen, C., Wang, Y., Wang, S., Liu, Y., Liu, R., Vourlidas, A., ... Zhou, Z. (2012). Super-elastic collision of large-scale magnetized plasmoids in the heliosphere. *Nature Physics*, 8(1), 923–928. Retrieved from http://adsabs.harvard.edu/cgi-bin/nph-data\_query?bibcode=2012NatPh...8..923S&link\_type=ABSTRACT

## **Related Papers**

- Shen, C., Wang, Y., Ye, P., & Wang, S. (2008). Enhancement of Solar Energetic Particles During a Shock Magnetic Cloud Interacting Complex Structure. *Solar Physics*, 252(2), 409–418.
- Wang, Y., Chen, C., Gui, B., Shen, C., Ye, P., & Wang, S. (2011). Statistical study of coronal mass ejection source locations: Understanding CMEs viewed in coronagraphs. *Journal of Geophysical Research*, *116*(A4), A04104.
- Wang, Y., Shen, C., Wang, S., & Ye, P. (2004). Deflection of coronal mass ejection in the interplanetary medium. *Solar Physics*, 222, 329.
- Wang, Y., Shen, C. L., Wang, S., & Ye, P. Z. (2003). An empirical formula relating the geomagnetic storm's intensity to the interplanetary parameters: VBz and Delta t. *Geophysical Research Letters*, 30(20), 2039. Retrieved from http://doi.wiley.com/10.1029/2003GL017901
- Wang, Y., Wang, B., Shen, C., Shen, F., & Lugaz, N. (2014). Deflected propagation of a coronal mass ejection from the corona to interplanetary space. *Journal of Geophysical Research: Space Physics*, 119(7), 5117–5132. https://doi.org/10.1002/2013JA019537
- Wang, Y., Xue, X., Shen, C., Ye, P., Wang, S., & Zhang, J. (2006). Impact of Major Coronal Mass Ejections on Geospace during 2005 September 7-13. Astrophysical Journal, 646, 625. Retrieved from http://adsabs.harvard.edu/cgibin/nph-data\_query?bibcode=2006ApJ...646..625W&link\_type=ABSTRACT
- Wang, Y., Zhang, Q., Liu, J., Shen, C., Shen, F., Yang, Z., ... Zhuang, B. (2016). On the Propagation of a Geoeffective Coronal Mass Ejection during. *Journal of Geophysical Research*, (March 2015), 7423–7434. https://doi.org/10.1029/
- Wang, Y. M., Ye, P. Z., Wang, S., & Xiong, M. (2003). Theoretical analysis on the geoeffectiveness of a shock overtaking a preceding magnetic cloud. *Solar Physics*, *216*(1–2), 295–310. https://doi.org/10.1023/A:1026150630940
- Wang, Y. M., Ye, P. Z., Wang, S., & Xue, X. H. (2003). An interplanetary cause of large geomagnetic storms: Fast forward shock overtaking preceding magnetic cloud. *Geophysical Research Letters*, 30(13), 31–33. https://doi.org/10.1029/2002GL016861

| University of Science and Technology of China                            | +                                |
|--------------------------------------------------------------------------|----------------------------------|
|                                                                          | Color Scheme Black/White ᅌ       |
|                                                                          | Username                         |
|                                                                          | Password                         |
|                                                                          | Login                            |
| Data, REseArch & More in Space physics                                   | 教育网用户可直接访问 http://222.195.74.11/ |
| USTC-SPD MCFitting DIPS SLIPCAT CMELOC QHCMEs FHCMEs WindICMEs GeoStorms | Events SHM Forums                |

中文版 Location: <u>Homepage</u> >> DREAMS

#### http://space.ustc.edu.cn/dreams/index.php

Thanks!

• <u>CME Deflection in Interplanetary Space (DIPS)</u>

Predict the CME trajectory in the ecliptic plane from the Sun to 1 AU. (launched on October 31, 2015)

• Fitting Magnetic Clouds

Velocity-modified cylindrical flux rope models for magnetic clouds observed in-situ. (launched on Aug 5, 2014)

#### **Data Products**

Online Models

- <u>Interplanetary Causes of Geomagnetic Storms Since 2007 (GeoStorms)</u>
  Interplanetary causes of moderate to intense geomagnetic storms since 2007 are identified. (launched on May 4, 2014)
- ICMEs recorded by WIND spacecraft Since 1996 (WindICMEs)

Interplanetary coronal mass ejections (ICMEs) are identified based on the Wind observations since 1996. The Dst peaks of the associated geomagnetic

storms are also listed. (launched on Apr 16, 2015)

• Full Halo CMEs (FHCMEs)

A list of full halo CMEs viewed by SOHO/LASCO since 2007 March 1. (launched on Mar 13, 2013)

• Quasi-Homologous CMEs (QHCMEs)

A list of quasi-homologous CMEs originating from the same super active regions during solar cycle 23. (launched on Nov 6, 2012)

• CME Source Locations (CMELOC)

CME's source locations on the visible solar disk manually identified based on SOHO/EIT and LASCO images. (launched on Apr 6, 2011)

Solar LImb Prominence CAtcher & Tracker (SLIPCAT)

Movies and catalogs of auto-detected solar limb prominences based on EUV observations at the wavelength of 30.4 nm. (launched on Mar 1, 2010)

• Events

Events of interest. (launched on Mar 22, 2013)

#### Data Mirrored

• Solar & Heliospheric Monitor (SHM)

Javamovies displaying the solar and heliospheric data observed by past and current spacecraft, including SOHO, STEREO, SDO, etc.