WORKING GROUP 2 - THEORY

Bojan Vrsnak, Jie Zhang, and <u>Pete Riley</u>

ISEST/MiniMax 2015 Workshop

Mexico City, Mexico

October 26, 2015

WG 2: OVERVIEW

- **Objective**: To understand the structure and evolution of CMEs as well as their origin and their magnetic rope structure. Specifically:
 - What is the origin of Bz and how can it be modeled?
 - Are CMEs deflected in the heliosphere?
 - How do ambient conditions affect CME structure, propagation, and dynamics?
 - How long does the Lorentz force dominate over aerodynamic drag?
 - How can we estimate the drag parameter and/or dimensionless drag coefficient?
- Approach: Compare results from different analytic and numerical models with measurements, such as transit time to 1AU, kinematics, impact speed, impact magnetic field, etc.

WG 2 – ACTIVITY REPORT

• Main progresses where theoretical aspects were included:

1. Drag effect related issues

- DBM applied to events from the "ISEST list"
- Comparison of analytic (DBM) and numerical (ENLIL) model (e.g., Vrsnak et al., ApJS 213, 21, 2014)
- Estimation of CME "true" mass (e.g., Bein et al., ApJ, 768, 31, 2013; Feng et al., JGR, in revision, 2014)
- CME Propagation: Where does Aerodynamic Drag 'Take Over'? (Sachdeva, Nishtha; Subramanian, Prasad; Colaninno, Robin; Vourlidas, Angelos, Ap. J., 2015)
- Heliospheric Propagation of Coronal Mass Ejections: Drag-based Model Fitting (<u>Žic, T.</u>; <u>Vršnak, B.</u>; <u>Temmer, M.</u>, Ap. J. Suppl. Ser., 2015)
- Dynamics of CMEs in the LASCO Field of View (Michalek, G.; Gopalswamy, N.; Yashiro, S.; Bronarska, K., Sol. Phys., 2015)

2. CME deflection/rotation

- Deflection --- Observational evidence and kinetic model (Wang et al., JGR, 119, 5117, 2014)
- 3-D evolution revealing rotation (Isavnin et al., SoPh, 2013; 2014)
- Global Trends of CME Deflections Based on CME and Solar Parameters (Kay, C.; Opher, M.; Evans, R. M., Ap. J. Lett., 2015)
- The Heliocentric Distance where the Deflections and Rotations of Solar Coronal Mass Ejections Occur (Kay, C.; Opher, M., Ap. J. Lett., 2015)

WG 2 – ACTIVITY REPORT

- Main progresses where theoretical aspects were included (continue):
- 3. Interacting structures
 - CME-CME interactions (e.g., Shen et al., GRL, 40, 1457, 2013; Temmer et al., ApJ 785, 85, 2014; Maricic et al., SoPh 289, 351, 2014; Shanmugaraju et al., SoPh 289, 339, 2014; Mishira et al., ApJ, 2014)
 - Shock-CME interactions (RAL/Oxford workshop)
 - An Analytical Model of Interplanetary Coronal Mass Ejection Interactions (Niembro, T.; Cantó, J.; Lara, A.; González, R. F., Ap. J., 2015)
- 4. MC fitting technique and related
 - Investigating plasma motion of magnetic clouds at 1 AU through a velocity-modified cylindrical force-free flux rope model (Wang et al., JGR, 2015)
 - Radial Evolution of a Magnetic Cloud: MESSENGER, STEREO, and Venus Express Observations (Good, S. W.; Forsyth, R. J.; Raines, J. M.; Gershman, D. J.; Slavin, J. A.; Zurbuchen, T. H., Ap. J., 2015)
 - Geometrical Relationship Between Interplanetary Flux Ropes and Their Solar Sources
 (Marubashi, K.; Akiyama, S.; Yashiro, S.; Gopalswamy, N.; Cho, K.-S.; Park, Y.-D., Solar Physics, 2015)

WG 2 – ACTIVITY REPORT

- Main progresses where theoretical aspects were included (continued):
- 5. Background solar wind
 - Spatially/temporally variable solar wind environment (e.g., Rollett et al., ApJL 790, 6, 2014)
 - On the role played by magnetic expansion factor in the prediction of solar wind speed

(Pete Riley, Jon A. Linker, C. Nick Arge, Space Weather Journal, 2015)

PLANS

- Main objectives/topics to be pursued:
 - Drag effect related issues
 - Comparisons with MHD solutions?
 - CME deflection/rotation
 - Interacting structures
 - MC fitting technique and related
 - Background solar wind
 - Start research on: How to model Bz ?!
 - Theory/numerical modelling
 - > Laboratory experiments for some topics

RECENT PROGRESS

HELIOSPHERIC PROPAGATION OF CORONAL MASS EJECTIONS: DRAG-BASED

MODEL FITTING by Zic et al. (2015)

$$F = F_{\rm L} - F_{\rm g} + F_{\rm d}$$
.

$$F_{\rm d} = -c_{\rm d} A \rho (v - w) |v - w|$$

$$a_{\rm d} = -\gamma(v-w)|v-w|$$

$$\gamma = c_{\rm d} \frac{A\rho}{M}$$

$$\gamma(R) = \gamma_{\infty} \frac{w_{\infty}}{w(R)}$$

$$E(\Gamma, w_{\infty}; R_0, v_0) = \sum_{i=0}^{N} [v_i - v(\{\Gamma, w_{\infty}; R_0, v_0\}, R_i)]^2$$

$$v(R) \frac{\mathrm{d}v(R)}{\mathrm{d}R} = -\gamma(R) \left[v(R) - w(R) \right] |v(R) - w(R)|$$

Thermodynamic MHD simulation of the Bastille Day event

TRACE 195 Å

After MHD relaxation (magnetic field lines)

inserted flux rope

X5.7 flare & geo-effective halo CME on 2000 July 14

- 1.) calculate steady-state corona & solar wind
- 2.) construct stable flux rope in active region
- 3.) trigger eruption by ad-hoc converging flows

converging flows

Thermodynamic MHD simulation of the Bastille Day event

- synthetic satellite images allow direct comparison with observations
- flare arcade and halo-CME morphologies qualitatively reproduced
- CME speed ≈ 1500 km/s & kinetic energy $\approx 4 \times 10^{32}$ ergs

Heliospheric extension of the Bastille Day event

- flux-rope core structure preserved at 1 AU (still connected to surface)
- ICME arrives with rather scattered shape (non-synchronous eruption?)
- area of -Bz relatively small → difficult to match/predict

Heliospheric extension of the Bastille Day event

Z X X

GSE coordinate system

- flux rope qualitatively reproduced
- B field strength too low (≈ factor 2)
- ICME too slow (≈ 6-8 h delay)

quantities at Earth very difficult to match with present models?

simulation data at 1 AU

SPHEROMAKS IN THE SOLAR WIND?

HOW TO MODEL/PREDICT B_z?

WHAT CAUSES NON-ZERO B_z?

- CMEs (magnetic clouds/flux ropes) –
 inside and outside the ejecta
- CIRs (shearing flows, compressions, rarefactions)
- W&T (Waves and turbulence)
- Misc. effects magnetic holes, PBSs, etc.
- S

CURRENT "STATE OF THE ART" FOR PREDICTING B_2 ...

- No space weather prediction centre(er) currently makes B₇ forecasts
- Predictions schemes/websites are under development
- Arguably, persistence $(B_z=0)$ is the best forecast
- Current "bar" Savani et al. (2015)

EXAMPLES OF TECHNIQUES FOR ESTIMATING BZ

Steady-state

- 1. CIRs
- 2. Jackson technique
- 3. Ulrich technique
- 4. Waves turbulence

Transients

- 1. Flux ropes (large-scale, small-scale)
- 2. Sheath regions of CMEs

PROJECT ZED: PROPOSED METHODOLOGY

PATTERN MATCHING APPROACHES

FLUX ROPE FITTING

SIMPLE DYNAMIC MODELS OF ICMES

MORE SOPHISTICATED DYNAMIC FLUX ROPE MODELS

MODELLING IS NOT THE SAME AS PREDICTION: THE PITFALLS OF "SCIENTIFIC" COMPARISONS

SCIENTIFIC OBJECTIVES OF PROJECT ZED

- 1. Develop an easy-to-use framework for testing B_z prediction algorithms;
- 2. Develop a rigorous set of metrics with associated skill scores that include estimates of uncertainty;
- Develop benchmark datasets (same data sources, sets, and sampling techniques);
- Test the currently most promising statistical, analytical, and numerical modeling techniques;
- 5. Develop a prioritized set of new predictive techniques; and
- Provide the completed framework as an open source resource to the scientific community.

WG2 AT THIS WORKSHOP (TUESDAY AM)

- Coronal Mass Ejections: A Journey From Its Origin to Its Transport in the Interplanetary Medium (Andrea Borgazzi, Invited)
- Balance of Energy in a CME (Héctor J. Durand Manterola)
- Plasma Interaction Processes That Lead to Viscous Forces in the Solar Wind (Héctor Pérez de Tejada)
- Synthetic Transits of Plasma Sheaths and Shocks: A Pathway to Predict in-situ Arrivals of Shock Waves Associated With Fast Halo CMEs (Pedro Corona Romero*, J. A. González Esparza, V. de la Luz, J. C. Mejía Ambriz, L. X. González)
- Dynamics of Coronal Mass Ejections in the Interplanetary Medium in Two Dimensions (Juan Carlos González Marin)
- Study of the Transport of Heat in the Solar Corona (Diana Gamborino Uzcanga*, J. Martinell Benito, D. del Castillo Negrete)