

Solar-cycle Effect on the Geoeffectiveness of Magnetic Clouds

N. Gopalswamy, S. Yashiro, H. Xie, S. Akiyama, and P. Mäkelä

Code 671, NASA/GSFC, Greenbelt, MD 20771, USA

Poor geoeffectiveness of cycle-24 magnetic clouds and sheaths Different behavior of white-light CMEs and magnetic clouds in cycle 24

ISEST Workshop, Mexico City, Mexico, October 25-30, 2015

Gopalswamy et al. 2015 JGR in press http://arxiv.org/abs/1510.00906

Motivation

- Average sunspot number (SSN) in SC 24 dropped by 40% (76 to 46)
- # Fast and wide CME rate dropped by 25% (3.6/mo to 2.7/mo)
- # of major storms (Dst <-100 nT) dropped by 78% (54 to 12)
- Drop in neither SSN nor CME rate is consistent with the decrease in major storms

Statistical

Gopalswamy et al. 2014 GRL

Magnetic dilution due to anomalous expansion of CMEs

Anomalous Expansion due to Weak Heliospheric Pressure

Magnetic Clouds in Cycles 23 and 24

- 65 MCs in SC 24 vs. 68 in SC 23 (first 73 months in each cycle)
 267 frontside halos in SC 24 vs. 264 in SC 23
- MC and Halo CME abundances relative to SSN were higher in cycle 24

	Cycle 23*	Cycle 24	Ratio (24/23)
SSN	76	46	0.61
#MCs	68 (0.89/SSN)	65 (1.41/SSN)	0.96 (1.58)
#Front Halos	264 (0.048/SSN)	267 (0.080/SSN)	1.01 (1.67)

*First 73 months are compared in each cycle

Measure MC and sheath properties, derive parameters such as VBz and expansion rate in cycles 23 and 24

MC: enhanced magnetic field, smooth rotation in By or Bz, low proton temperature or beta (Burlaga et al. 1981)

MC Properties In Solar Cycles 23 and 24

Param ^a		Cycle 23 (n=68)			Cycle 24 (n=65)		R ^d	D^{e}	P ^f	SC 23 vc 21
	Mean	Conf. Int. ^c	Med	Mean	Conf. Int. ^c	Med				
B _t	16.54	14.87 to 18.20	14.55	12.33	11.23 to 13.43	12.20	0.75	0.3995	0.000	$V_{\text{aven}} = V_{\text{LF}} - V_{\text{TF}}$
Bz	-10.90	-12.43 to -9.37	-10.35	-7.80	-8.93 to -6.67	-7.50	0.72	0.2710	0.012	$F = V_{LE} / V$
$ B_z $	13.33	11.93 to 14.72	11.75	10.23	9.24 to 11.21	9.70	0.77	0.2572	0.020	= 2V / (V + V)
V	473.9	439.9 to 507.8	445	402.1	384.5 to 419.7	399	0.85	0.2833	0.007	$ - 2 v_{LE} / (v_{LE} / v_{TE}) $
VBz	-5119	-6098 to -4139	-4362	-3078	-3558 to -2599	-2904	0.60	0.3373	0.001	$\Delta l = l_{TE} - l_{LE}$
∫VB₂	-2910	-3429 to -2392	-2450	-1853	-2172 to -1535	-1595	0.64	0.2969	0.013	$\zeta = V_{exp} L / \Delta t V_c^2$
V ^b exp	51.0	33.78 to 68.22	42.50	25.28	14.62 to 35.93	25.00	0.50	0.2425	0.033	No significant change in
Fexp	1.053	1.038 to 1.068	1.050	1.032	1.020 to 1.045	1.030	0.98	0.1769	0.225	
ζ	0.621	0.519 to 0.722	0.625	0.640	0.545 to 0.736	0.610	1.03	0.1157	0.867	F_{exp} , Δt , ζ , and N_p
<i>P</i> _t	155.8	123.9 to 187.7	121.8	92.17	77.58 to 106.8	79.70	0.59	0.4283	0.000	What Changed (decreased):
N_p	7.549	6.540 to 8.557	7.100	6.897	5.970 to 7.824	5.800	0.91	0.1441	0.464	B. B. V. VB. V. P. size. D.
Size	0.224	0.202 to 0.246	0.230	0.174	0.151 to 0.197	0.170	0.78	0.2704	0.012	
∆t	21.99	19.56 to 24.42	21.45	19.19	16.68 to 21.70	18.00	0.87	0.1762	0.229	SC 24 MCs are barely geoeffective
D_{st}	-65.54	-78.29 to -52.79	-56.00	-33.37	-42.27 to -24.47	-22.00	0.51	0.3318	0.001	Dst dropped by 49%

Sheath Properties in SC 23 and 24

Table 3. Kolmogorov Smirnov (KS) Test Results for Sheath Properties in Solar Cycles 23 and 24

Param ^a	Cycle 23 (<i>n</i> =55)			Cycle 24 (<i>n</i> =40)			<i>R</i> ^c	D^{d}	P^{e}
	Mean	Conf. Int	Median	Mean	Conf. Int.	Median			
B_t	19.18	15.76 to 22.59	15.00	13.24	11.19 to 15.28	11.55	0.69	0.3318	0.009
B_z	-14.23	-17.26 to -11.19	-11.90	-8.92	-11.17 to -6.679	-7.7	0.63	0.3727	0.002
$ B_z $	15.87	12.82 to 18.92	13.10	11.47	9.584 to 13.37	9.7	0.72	0.3250	0.011
V	539.5	494.4 to 584.7	484	447.4	417.1 to 477.8	426.5	0.83	0.2932	0.029
VB_z	-8101	-10840 to -5363	-5600	-3988	-5251 to -2726	-3040	0.49	0.3659	0.003
$\int VB_z$	-3260	-4381 to -2131	-2370	-1634	-2060 to -1208	-1245	0.50	0.3364	0.008
P_t	272.9	182.1 to 363.6	168.8	135.2	96.18 to 174.3	93.60	0.50	0.3432	0.006
Np	15.25	12.85 to 17.65	13.20	12.90	10.85 to 14.95	11.35	0.85	0.1932	0.319
Δt	11.19	9.40 to 12.98	10.70	9.635	7.948 to 11.32	9.2	0.86	0.1273	0.821
D_{st}	-55.18	-71.45 to -38.92	-37.00	-22.75	-33.63 to -11.87	-12.00	0.41	0.4409	0.000

No significant change in Δt and N_p

```
What Changed (decreased):
```

$$B_{t}, B_{z}, V, VB_{z}, P_{t}D_{st}$$

Dst dropped by 59%; SC 24 MCs are not geoeffective on the average!

Dst Decline is Commensurate with VBz Drop

Inter & Intra Cycle Variations

- Both V and BzS declined resulting in VBz decline and hence Dst decline
- Consistent with previous conclusions based on major storms and the anomalous expansion
- However, the MC size at 1 AU is smaller in cycle 24 not consistent with wider CMEs near the Sun

No change in duration, but decline in size

Kolmogorov-Smirnov Test: Ratio of $<\Delta t>$: 0.87 D-statistic: 0.1762 ($\sim D_c = 0.169$) Probability: 0.227 (null hypothesis that the dist. are the same cannot be rejected)

size ~ $V_c/2\Delta t$ V_c decline is significant, so is size decline

Consistency Check: Expansion Speed & Central Speed of MCs

Expansion Rate is the Same Because Decrease in ΔP_t is Compensated by Decrease in MC Speed

	SC 23	SC 24	Ratio (24/23)
Ambient Pressure (pPa)	42.4	29.6	0.70
MC Pressure	139.8	91.7	0.66
ΔP_t	97.4	62.1	0.64
$\Delta P_t/V_c^2$	4.8e-4	4.1e-4	0.85
$\Delta P_t / (V_c^2 \Delta t)$	2.2e-5	2.1e-5	0.96

Pressure Balance Distance: Reconciling near-Sun and near-Earth Observations

- CME size in SC 24 is larger near the Sun, but MC size is smaller at 1 AU
- $S = S_o (L/L_o)^{\zeta}$; S_o is the initial FR size R at L_o (where FR ambient pressure balance is reached Gulisano et al. 2010)
- $S_{24}/S_{23} = (S_{o24}/S_{o23})(L_{o23}/L_{o24})^{\zeta}$
- $S_{o24}/S_{o23} = W_{24}/W_{23} = 1.38$ (CMEs wider in SC 23; Gopalswamy et al. 2014)
- $S_{24}/S_{23} = 0.78$ (Observations at 1 AU, Gopalswamy et al. 2015)
- $\zeta = 0.64$
- $\rightarrow L_{o23}/L_{o24} = 0.41$
- $L_{o23} = 5 \text{ Rs}$
- $\rightarrow L_{o24}$ = 12.2 Rs. Pressure balance is reached at a larger distance in SC 24
- Flux rope size and CME width are defined differently. Measure main body?

Pressure Balance Farther from the Sun in SC 24

Flux Rope Size $S = S_o (L/L_o)^{\zeta}$

Distance

Intra-cycle Variations

- The parameters (*V_L*, *B_t*, *P_t*, *VB_z*, *B_z*) that are directly linked to the solar sources show clear solar cycle variation
- The pressure balance happens at a larger distance from the Sun in SC 24 (12 Rs vs.5 Rs)
- Intense storms tend to occur during the maximum phase of solar cycles
- Smaller MC speed and expansion speed in SC24, consistent with smaller ΔP_t

Key Findings

- Intense storms tend to occur during the maximum phase of solar cycles
- The weaker geoeffectiveness can be directly attributed to the drop in VBz
- Bz reduction due to enhanced expansion in cycle 24
- Dilution of magnetic content occurs near the Sun
- The pressure balance happens at a larger distance from the Sun in cycle 24 (12 Rs vs.5 Rs). Explains the seemingly contradictory relationship between sizes at 1 AU and at the Sun
- The parameters (V_L, B_t, P_t, VB_z, B_z) that are directly linked to the solar sources show clear solar cycle variation
- Smaller MC speed and expansion speed in SC24, consistent with smaller ΔP_t

Hurricane Patricia

This satellite image taken at 1:45 p.m. EDT on Friday, Oct. 23, 2015, and released by NASA, shows the eastern quadrant and pinhole eye of Hurricane Patricia moving towards southwestern Mexico. The Category 5 storm is strongest ever in the Western Hemisphere, according to forecasters. (NOAA GOES Project/NASA via AP)

Hurricane #Patricia approaches #Mexico. It's massive. Be careful! #YearInSpace 3:37 PM - 23 Oct 2015