

Current Trends in the Study of Solar Energetic Particle Events

Nat Gopalswamy NASA/GSFC, Greenbelt, MD 20771

With thanks to: S. Yashiro, H. Xie, S. Akiyama, P. Mäkelä, N. Thakur

ISEST Mexico City October 26-30 2015

courtesy: C. Jackman

Two Processes for Particle Acceleration

Flare Reconnection Shock

Shock: large SEP events CME a must

Flare: impulsive SEP events, Much smaller, high charge states CME may or may not accompany

The relative contribution from Flare & CME in a given event under debate

Characteristics of SEP-associated CMEs

Strong shock & Good magnetic connectivity required

SEP Paradigm

CME – SEP Intensity Correlation

- Needs to be good because SEPs are caused by CME-driven shocks
- Strong shocks when the CME is fast
- For a given CME speed the SEP intensity can vary over 3 orders of magnitude → weak correlation
- But the environment (density, Alfven speed) can make a fast CME drive a weak shock and a slow CME drive a fast shock depending on the ambient Alfven speed
- Preceding CME is another environmental factor modifying the shock strength, seed particles

CME – SEP Intensity Correlation

- P events: The primary CMEs are preceded by at least one wide CME (W ≥ 60°) launched from the same source region within 24 hours ahead of the onset time of the primary CMEs.
- O events:
 - Possible CME-CME interaction within the occulting disk
 - CME-Streamer interaction
 - Halo CME-Halo CME interaction launched from the nearby (not same) source region.
- NP events: "No Preceding" CME events
- All high-intensity events in SC 24 have CME interaction

Scatter reduced when NP, P+O considered separately \rightarrow preconditioning is a factor in causing the scatter

Type II / Type III Bursts and SEP Events

- Type III bursts lasting for ≥ 20 min seem to be linked to SEP events (Cane et al. 2002; MacDowall et al., 2003; 2009) : Flare origin for SEPs?
- The presence of a complex long-duration, low-frequency type III burst is not a sufficient condition for SEPs (Gopalswamy & Mäkelä, 2010, 2011)
- SEP events with only type III bursts may be impulsive events? (Miteva et al 2013; Kouloumvokos et al. 2015)

The middle one lacked type II and SEP event

Gopalswamy & Mäkelä, 2010

Solar Flares, CMEs, and SEP Events

Solar Flares, CMEs, and SEP Events

Slower CMEs with SEPs 1384 km/s 837 km/s 1415 km/s

CME speed is important for SEP association

But there are SEP events from <M5.0 eruptions!

Slower CMEs with SEPs 1384 km/s 837 km/s 1415 km/s 1187 km/s 1479 km/s <a>

CME speed is important for SEP association, but The flare size is not: 20 SEP events with ≥M5 flares 10 SEP events with <M5 flares (6 Cclass flares)

GLEs in SEPs

- Latitudinal Connectivity
- CME speed
- Ambient conditions
- Height of shock formation

GLEs and CMEs: Latitudinal Connectivity

S

GLE Candidates

Flux rope locations, corrected for BO angle

13 events had ecliptic distance >13° 8/13 or 62% had V >2000 km/s 5/13 or 38% had V <2000 km/s

Start with 31 Front-side SEP events in cycle 24

events with ecliptic distance <13° as GLE candidates

Gopalswamy et al. 2015

The 8 GLE Candidates: Only One GLE Event

#	CME Date UT	Imp.	Flr Loc.	FR Loc	B 0	Final Loc	Vsp	Max E	Ір	
4	2011/06/07 06:16	M2.5	S21W54	S08W51	+0.1	S08W51	1680	330-420	72	K
5	2011/08/04 03:41	M9.3	N19W36	N19W30	+6.0	N13W30	2450	165-500	96	
6	2011/08/09 07:48	X6.9	N17W69	N08W68	+6.3	N02W68	2496	330-420	26	
8	2011/11/26 06:09	C1.2	N08W49	N10W47	+1.5	N08W47	1187	40-80	80	
13	2012/05/17 01:25	M5.1	N11W76	S07W76	-2.4	S05W76	1997	>700	255 G	LE
23	2012/09/27 23:24	C3.7	N06W34	N16W29	+6.9	N09W29	1479	80-165	28	
27	2013/05/22 13:08	M5.0	N15W70	N02W59	-1.8	N04W59	1881	330-420	1660	_
33	2014/02/20 07:26	M3.0	S15W73	S14W70	-7.0	S07W70	1281	330-420	22	

Table 2. List of candidate GLE events

- #13 is the 2012 May 17 GLE
- ## 4, 8, 23, 33 have speeds well below typical GLE CME speeds
- #27 Cannibalism event, but the interaction is at >20 Rs; Peak speed attained at >7 Rs
- ## 5, 6 Ambient conditions not favorable

The two fastest events (~2500 km/s; no GLE)

CME Interaction beyond 20 Rs

Radio direction finding points the radio source to the interaction region

SEPs in FE CMEs

- Large shock formation heights
- Soft spectrum (10-100 MeV range)
- Examples of pure shock acceleration
- GLE and FE-SEP events are at opposite ends of acceleration and spectral index values (see FE – SEP paper in ApJ)
- Maximum energy of accelerated particles seem to be inversely proportional to the shock formation height

Shock & CME height at GLE Particle Release

The 2012 May 17 GLE is consistent with the particle release height as a function of longitude

With minimal extrapolation

Height of shock formation from wave radius at the time of type II radio burst

Reames, 2009; Gopalswamy et al. 2012

Shock-formation Height

- Metric type II radio bursts associated with large SEP events during solar cycles 23 and 24
- CME heights using a flare-onset method
- The mean CME height for non-GLE SEP events (1.72 *Rs*) is ~12% greater than that (1.53 *Rs*) for cycle-23 GLEs
- The mean CME height in cycle 23 non-GLE SEP events (1.79 *Rs*) is greater than that in cycle 24
- The lower shock formation height in cycle 24 indicates a change in the Alfven speed profile because of weaker magnetic fields and plasma levels are closer to the Sun

Initial Acceleration (Shock Formation Height)

Accelerations from height-time measurements of CME Flux ropes fit to SOHO/STEREO CMEs

SEP events associated with CMEs from quiescent filament eruption accelerate slowly and form shocks at distances >2-3 Rs

GLE associated CMEs impulsively accelerate and form shocks at distances ~1.4 Rs

Solar Cycle Variation of SEPs

- First 73 months of the two cycles compared
- Average sunspot number (SSN) dropped by 40% (76 to 46)
- # Fast and wide CME rate dropped by 30% (3.74/mo to 2.62/mo)
- # of large SEP events (>10 MeV) dropped by 40% (60 to 37)
- # of GLE events (>700 MeV) dropped by 78% (9 to 2)
- Drop in # of >10 MeV events similar to SSN, but not the # of GLEs
- Drop in # FW CMEs is smaller than SSN

Gopalswamy et al. 2014 GRL

Paucity of GLEs, not of >10 MeV SEPs

Reduced B in the heliosphere → Reduced acceleration efficiency (Kirk, 1994) dE/dt ∝ B (rate of energy gain) With the available time of ~10 min, it is difficult to accelerate SEPs to GeV energies

Reduced Alfven speed near Sun →No major reduction in the # SEP Events

Gopalswamy et al. 2014 GRL; McComas et al. 2013

Wavelength Range of Type II Bursts

λ Domain	Cycle 23	Cycle24
mD	13	5
D	4	2
Dk	5	6
mk	29	22
mk+Dk	34 (66%)	28 (80%)

mD = meter to decameter-hectometricD = decameter-hectometricDk = decameter-hectometric to kilometricmk = meter to kilometric wavelengths

Consistent with stronger shocks in cycle 24 due to lower VA

Longitudinal Extent of SEP events

- Cycle 24 is favorable for larger longitudinal extent?
- More halos anomalous expansion
- Wider shocks
- Flux rope orientation: high-inclination flux ropes may have smaller longitudinal extent compared to the low-inclination events

Does the Flux Rope Orientation Matter?

Summary

- CME speeds are consistently important for SEP occurrence; Flare size is not
- Complex type III bursts are not sufficient for SEP events
- Anomalous expansion of CMEs may be linked to longitudinal spread of SEPs
- Low shock formation height is important for high-energy SEP events
- # of high-energy SEP events in SC 24 is small compared to SC 23
- The reduction is far more than that in SSN and FW CMEs
- Several factors seem to be responsible
- Reduced efficiency of shock acceleration (weak heliospheric B)
- Large-ecliptic distance to solar sources (poor latitudinal connectivity)
- Variation in local ambient conditions (e.g. high Alfven speed)
- Shock formation at large heights (beyond typical GLE release heights)