

Measuring coronal magnetic fields with Shocks driven by CMEs

A. Bemporad, R. Susino, and S. Mancuso

INAF-Turin Astrophysical Observatory, Italy

G. Lapenta and F. Bacchini,

CPA, KU Leuven, Belgium

INAF – Italian National Astrophysics Institute

OATo – Turin Astrophysical Observatory

Outline

• Introduction: most recent coronal magnetic fields measurements from space and from ground

• Pre- and post-shock field measurements with combined WL and UV observations

Pre-shock coronal field measurements with WL observations alone

Future developments and perspectives

Recent coronal field measurements from space

Comparison between unipolar potential field extrapolations (orange) and 3D reconstructed loops (red) \rightarrow significant differencess in loop inclination and connectivities

Field extrapolations bounded to 3D stereoscopic reconstructions: forward fitting of 3D loops with multipolar photospheric dipole-fields → disagreement due to non-potentiality and currents, but also to inadequacy of photospheric magnetograms.

(De Rosa et al. 2009; Aschwanden et al. 2012; Chifu et al. 2015)

 Field strength from propagation of EUVwaves: by assuming that EUV-wave speed
 = fast magnetosonic speed and measuring the coronal density and temperature from EUV images/spectra (AIA + EIS data) → need a comparison with extrapolated field to infer height estimates

(Long et al. 2011; West et al. 2011)

"Measuring coronal magnetic fields with shock driven by CMEs" – A. Bemporad

Ascrutorio Toring stronogico

Recent coronal field measurements from ground

Example (courtesy of S. Gibson) of a coronal cavity observed by SDO/AIA 171 (left), and the characteristic "V-shaped" Van Vleck signatures in the distribution of the FeXIII 1074nm linear polarization strength as observed (middle) and simulated (right)

Different instruments (e.g.: CoMP, CoMP-S, CorMag) are now providing unique information on coronal fields via:

- Zeeman effect on VIS/IR spectral lines (e.g. FeXIII 1074nm) → spectro-polarimetry provides:

 a) measurements of circular polarization (Stokes V/I) → B line of sight strength; b)
 measurements of linear polarization (Stokes L/I) becoming 0 at Van Vleck angle (~54°
 between the radial and local field orientation) → B orientation on the plane of the sky;
- Hanle effect (saturated $A_{ij} < v_B$) on VIS spectral lines (e.g. FeXIV 530nm), spectro-polarimetry provides measurements of linear polarization \rightarrow **B orientation on the plane of the sky.**

Issues related with LOS integration will be solved via tomographic-inversion once daily obs. will be available (ATSA, COSMO, ASPIICS), assuming stationarity of coronal structures.

Coronal field measurements with Shocks

A new technique to **measure coronal fields crossed by CMEs** proposed by Gopalswamy & Yashiro (2011) by applying the Furris & Russell's (1994) relation between the **standoff distance** ΔR of an interplanetary shock and the radius of curvature R_c of the driver:

$$M_{\Delta R}^{2} = \frac{\Delta R / R_{C} (\gamma + 1) + 1.6}{\Delta R / R_{C} (\gamma + 1) - 0.8 (\gamma - 1)}$$

(Kim et al. 2012)

 $\Delta R = R_{shock} - R_{fluxrope}$, M = shock Mach number, γ adiab. index. **Technique:** measure R_{shock} and $R_{fluxrope}$ from WL images \rightarrow estimate of $M = v_{in}/v_A = (v_{shock} - v_{solarwind})/v_A \rightarrow$ measure v_{shock} and assume $v_{solarwind} \rightarrow$ estimate of $v_A = B/(\mu\rho)^{0.5} \rightarrow$ measure ρ (from pB images or type-II radio burst) \rightarrow estimate of B.

 \rightarrow applied to shocks observed in WL coronagraphic images (Kim et al. 2012), **EUV disk imagers** (Gopalswamy et al. 2012) and **WL Heliospheric imagers** (Poomvises et al. 2012).

Limits: field can be measured only at the nose where quasi-parallel shock can be assumed

(Kim et al. 2012)

"Measuring coronal magnetic fields with shock driven by CMEs" – A. Bemporad

Alternatively coronal field can be measured directly from the **density compression ratio** *X* at the shock front:

Results: *B* and v_A measured in a wide range, *B* consistent with previous measurements.

Problem: shock **compression ratios X from WL likely underestimated** by a factor of ~ 2 because of LOS assumptions.

"ISEST/MiniMax 2015 Workshop" – 26-30 October 2015, Mexico City

Results from combined WL and UV data

3.0

"Measuring coronal magnetic fields with shock driven by CMEs" – A. Bemporad

Asservatorio Toting strongereo

Results from combined WL and UV data

Bemporad, Susino & Lapenta 2014

Unique information on shocked plasma derived from analysis of both UV and WL data:

LASCO + UVCS pre-CME data → upstream parameters (*T*, *n*, *v*_{out}), but the magnetic field.
upstream parameters + shock compression ratio *X* from WL → R-H equations for oblique shock → downstream parameters including full *B* vector on the plane of the sky.
Shock transit → compression (factor ~ 1.7–2.7), heating (factor ~ 1.5 – 3.0 at the flanks, ~ 8 – 12 at the nose), *B* compression (factor ~ 1.2 – 1.9) & deflection (~ 14° – 22° at the flanks, > 40° at the nose). Heating derived with RH-Eq. more likely represents proton heating, while temperature increases by adiabatic compression (factor ~ 2 at the nose, ~1.2–1.5 at the flanks) likely more representative of electron heating → shock transit → *T_e* – *T_p* decoupling.

Test of results with MHD simulations

2D single-fluid MHD simulations of a coronal shock were performed (by the Group at CPA–KU Leuven) with FLIPMHD3D (based on Brackbill, 1990).

<u>**Results:**</u> very good agreement between observations and numerical simulations for the spatial distribution and time evolution of 1) compression ratios X, 2) Mach numbers M_A , and 3) magnetic field deflections across the shock surface.

The June 7th 2011 eruption

COR1B+EUVB 06:40-06:35 CME bubble and compression front (Cheng et al. 2012).

Spectacular eruption (associated with M2.5 flare, type-II and –III radio bursts, γ-ray emission, Ackermann et al. 2014). Many different works published relative to this eruption focusing on:

• dynamics and plasma properties of **returning plasma blobs** (Carlyle et al. 2014; Dolei, Bemporad & Spadaro 2014; Innes et al. 2012; Williams et al. 2013)

- associated **EUV waves** (Cheng et al. 2012) and **type-II burst** (Dorovskyy et al. 2015)
- energy release from falling material impact on the sun (Gilbert et al. 2013; Reale et al. 2013)
- reconnection driven by the CME (van Driel-Gesztelyi et al. 2014)

Our analysis focused on the WL data relative to the associated shock wave.

2D maps of coronal fields from WL observation of CME-driven shocks

- Analysis of WL (*pB*) coronal pre-CME image → 2D map of ambient pre-CME coronal densities n_e.
- Identification of shock surface location (pixel by pixel) in WL images \rightarrow
 - a) shock kinematic \rightarrow 2D map (altitude vs. latitude) of shock velocity v_{shock} ;
 - b) orientation of shock surface with respect to the radial direction → shock inclination angle \$_{shock} at different latitudes.
- Hypothesis on the pre-shock coronal outflow speed $v_{wind} \to 2D$ map of shock upstream velocity $\bm{v_{up}}.$
- Analysis of WL (*tB*) intensity variation across the shock surface → shock compression ratios X_{shock} at different altitudes and latitudes
- Hypothesis on the expression of Mach number for the general case of oblique shock (next slide) \rightarrow 2D map of shock Mach number M_A .
- Combination of M_A and v_{up} 2D maps \rightarrow 2D map of the upstream Alfvén velocity v_A
- Combination of v_A and n_e maps \rightarrow 2D map of pre-shock coronal field strength *B* (without application of MHD-RH equations)

Compression ratios and Mach numbers from WL

- **Pre-shock densities** derived with latest pre-CME LASCO pB image.
- **Compression ratios** *X* derived all along the shock front by:
- 1. measuring the WL intensity ratio between the front and the corona,
- 2. taking into account LOS integration effects (shock depth *L* along the LOS from its projected thickness: $L=0.9 R_{\odot}$ for C2, $1.1 < L < 1.3 R_{\odot}$ for C3),
- 3. deriving the density in the shocked region reproducing the WL increase.

<u>Results:</u> X maximizes at shock nose, X decreasing with shock altitude.

- Mach numbers M_A derived all along the shock front by:
- 1. measuring from WL images the inclination θ of shock surface with respect to the radial,
- 2. applying the empirical formula (tested in Bemporad et al. 2014 and Bacchini et al. 2015) for M_A in the case of oblique shock ($\beta << 1$, $\gamma = 5/3$)

$$\begin{split} M_{A\perp} &= \sqrt{\frac{X(X+5)}{2(4-X)}} & \text{(Bemporad \&}\\ Mancuso 2012) \\ M_{A\parallel} &= \sqrt{X} \\ M_{A \angle} &= \sqrt{(M_{A\perp} \sin \theta)^2 + (M_{A\parallel} \cos \theta)^2} \end{split}$$

<u>Results</u>: M_A maximizes at shock nose, decreasing with shock altitude.

LASCO C2 07:01:52

Results: 2D maps of v_{shock}, M_A, v_A, n_e

Susino, Bemporad & Mancuso (2015)

"Measuring coronal magnetic fields with shock driven by CMEs" – A. Bemporad

"ISEST/MiniMax 2015 Workshop" - 26-30 October 2015, Mexico City

Results: 2D map of coronal Magnetic Fields

"Measuring coronal magnetic fields with shock driven by CMEs" – A. Bemporad

"ISEST/MiniMax 2015 Workshop" – 26-30 October 2015, Mexico City

10

12

"ISEST/MiniMax 2015 Workshop" – 26-30 October 2015, Mexico City

Coronal Magnetic Fields

<u>Results</u>: brighter features in WL (streamers) associated with lower magnetic field strength and vice-versa \rightarrow in agreement with the location of neutral CSs.

This is the first ever 2D coronal magnetic field map derived with such large altitude and latitude coverage.(~110° in latitude, 12 R_{sun} in altitude)

"Measuring coronal magnetic fields with shock driven by CMEs" – A. Bemporad

Future developments (1/2)

- Identification of shock front in COR-A and –B data → 2D maps of mag. fields in the intermediate corona (~ 2-10 R_{sun}) at different longitudes → comparison with field extrap. and 3D MHD models (WG5 Bs challenge);
- identification of possible SEP sources in the corona → 3D reconstruction of the shock surface with LASCO, COR1-A and COR1-B + comparison with SEP fluxes measured by SOHO and STEREO + SEP propagation model (WG6 SEP source);
- identification of interplanetary shock in HI data → determination of 2D maps of magnetic fields in the outer corona (WG5 – Bs challenge)

Future developments (2/2)

Tian et al. $(2012) \rightarrow$

Select good candidate events for the determination of **Iower coronal field strenght, compression & deflection** (**WG5 – Bs challenge**) across the shock from the early evolution in EUV images; this will need:

- inclusion of a coronal field extrapolation/model for the pre-shock field orientation,
- inclusion of pre-shock coronal field orientation as observed with spectro-polarimetry (CoMP data),
- comparison between magnetic field strengths measured with shock and spectropolarimetry and extrapolated field,
- discuss how results are related on the assumed pre-shock field inclination.

"Measuring coronal magnetic fields with shock driven by CMEs" - A. Bemporad

"ISEST/MiniMax 2015 Workshop" - 26-30 October 2015, Mexico City

Future perspectives (1/2): PROBA-3/ASPIICS

ASPIICS FoV: 1.08 – 3.0 R_{sun} (4.2 R_{sun} in the corners)

ASPIICS FOV 2014/10/14 18:24:13 UT

Proba-3 is ESA's – and the world's – first precision formation flying mission. A pair of satellites will fly together maintaining a fixed configuration as a 'large rigid structure' in space to prove formation flying technologies. The paired satellites will form together a 150-m long solar coronagraph (ASPIICS).

The ASPIICS Coronagraph will have **5 channels**: 1 white light, 4 polarised light, 1 narrowband filter (He I D3 line at 5876 Å) \rightarrow discussion on possible inclusion of narrow-band filters for FeXIV 5303 Å «green» line is in progress → coronal field measurements with Hanle effect

Future perspectives (2/2): Solar Orbiter/METIS

Shock in UV (HI Ly α 1216Å) seen by UVCS

Solar Orbiter/METIS will provide the first ever obsevations of solar corona in WL and UV (HI Lyman-α 1216 Å). Coronal HI Lyman-α is almost entirely due to radiative excitation by chromospheric radiation, followed by spontaneous emission (resonant scattering - Gabriel 1971). **Shocks transit** \rightarrow shock heating of protons + adiabatic heating of electrons \rightarrow neutral H atoms (initially unaffected) surrounded by hotter and faster plasma \rightarrow increase in collisional ionization rate by e^- and charge exchange rate with $p^+ \rightarrow$ sudden HI Lyman- α intensity decrease due to 1) higher T and 2) higher v_{out} (Doppler dimming) \rightarrow post-shock plasma barely visible in HI Ly- α .

Described techniques will allow to infer the shock heating and coronal fields, given the pre-shock densities from WL (pB) and pre-shock temperatures from I(Iyα)/pB ratio.

210

Summary & Conclusions

• UV and WL data combination \rightarrow unique information on CME-driven shocks: *full* pre- and post-shock plasma parameters (*T*, *n*, *v*) and magnetic field vector **B** on POS along the shock front \rightarrow modification in the ambient field met by the CME

• WL coronagraphic images can provide many information as well \rightarrow shock compression ratio, velocity, Mach number in the region crossed by the shock \rightarrow identification of super- sub-critical regions

• This allowed us to derive the 2D distribution of magnetic field strength up to $12 R_{sun}$ (not only radial profiles at shock nose, but also latitudinal distribution).

• Future developments: extend these studies at the lower corona (combining EUV images, field extrapolations, field reconstructions with CoMP) and at the extended corona (with images acquired by the heliospheric imagers)

• **Future perspectives:** combine these techniques with future magnetic field spectro-polarimetric observations that will be provided by PROBA-3/ASPIICS; apply these techniques to future Solar Orbiter/METIS observations of shocks.