Turn on the super-elastic collision nature of CMEs through low approaching speed

Fang Shen¹, <u>Yuming Wang²</u>, Chenglong Shen² and Xueshang Feng¹

¹SIGMA Weather Group, State Key Laboratory of Space Weather, CAS, China ²School of Earth and Space Sciences, USTC, China

ISEST Workshop, Mexico, 2015.10.27

Type of collision nature

Туре	е	Total kinetic energy		
Merging	-1 <e<0< td=""><td>Decrease</td></e<0<>	Decrease		
Perfectly inelastic	e=0	Decrease		
Inelastic	0 <e<1< td=""><td>Decrease</td></e<1<>	Decrease		
Elastic	e=1	Conserved		
Super-elastic	e >1	Increase		

Two measures

• Coefficient of restitution

• Total kinetic energy

Supplement in Shen et al., NatPhys, 2012

Propose the possibility of super-elastic collision between CMEs

(Shen C., et al., Nat. Phys., 2012)

a

Verified with 3D MHD numerical simulations

(Shen F., et al., GRL, 2013)

However

- Gopalswamy et al., 2001, ApJL: Cannibalism of two CMEs --- merging?
- Lugaz et al., 2009, AG: Vcme1: 600 → 850 900 km/s, Vcme2: 1200 1300 → 800 km/s --possibilities of perfectly inelastic, elastic and shock effect were discussed
- Temmer et al., 2012, ApJ: before collision, Vcme1 ~ 600 km/s and Vcme2 ~ 1400 km/s; after collision, merged feature ~ 800 km/s --- "super" inelastic → merging?
- Lugaz et al., 2012, ApJ: Vcme1 increases a little, Vcme2: 600 → 380 km/s --- perfectly inelastic
- Lugaz et al., 2013, ApJ: Simulation Case B, minimum reconnection; Vcme1: 600 → 650 km/s,
 Vcme2: 1000 → 650 km/s --- "super" inelastic → merging?
- Temmer et al., 2014, ApJ: Vcme1: 400 → 700 km/s Vcme2: 1300 → 600 km/s --- "super" inelastic → merging?
- Mishra et al., 2015, SoPh: Vcme1: 365 \rightarrow 450 km/s, Vcme2: 625 \rightarrow 430 km/s --- inelastic
- Colaninno & Vourlidas, 2015: super-elastic
- Shen et al., 2012, NP: Vcme1: 240 \rightarrow 320 km/s, Vcme2: 410 \rightarrow 350 km/s --- super-elastic

Approaching speed might play a important role

Numerical experiments

- MHD Model
 - 3-D corona-interplanetary total variation diminishing (COIN- TVD) scheme in a Sun-

centered spherical coordinate system

- Non-reflecting Boundary Conditions at lower boundary
- CME Initiation
 - A high-density, -velocity, -temperature, and magnetized plasma blob is superposed on the background solar wind model

Five test cases --- Setup

	Direction	R	В	n	T	E_m	E_i	E_g	V_{sw}	
Common par.		R_s	$\times 10^5 \text{ nT} \times 10^7 \text{ cm}^{-3}$		$\times 10^5 \text{ K}$	$ imes 10^{31} \text{ erg}$			$\mathrm{km}\mathrm{s}^{-1}$	
	N11W18	0.5	1.47	4.0	5.0	1.50	1.37	-0.64	$316 \sim 461$	
Other par.	Case 1		Case 2		Case 3		Case 4		Case 5	
	CME1	CME2	CME1	CME2	CME1	CME2	CME1	CME2	CME1	CME2
$V_{CME}(\mathrm{kms^{-1}})$	200	400	200	600	200	1000	600	800	1000	1200
$E_k (\times 10^{31} \text{ erg})$	0.513	1.83	0.513	3.44	0.513	9.13	3.44	5.96	9.13	12.9
$E_t \; (\times 10^{31} \text{ erg})$	2.74	4.06	2.74	5.67	2.74	11.36	5.67	8.19	11.36	15.13
t_s (hours)	7	7 8		8	10		4		3	
Same V _{cme1} , different ΔV				Different V _{cme1} , same ΔV						

Five test cases ---- Results

Search the boundary between the super-elastic and inelastic nature

Critical value of the approaching speed ΔV

• Dependent on CME speed, e.g.,

V_{cme1}

- Dependent on the ratio of CME kinetic energy to the total energy, defined as k-number
 - ✓ k > 0.5 means kinetic energy is dominant, otherwise

kinetic energy is a minor one.

Relationship of the approaching speed with $\rm V_{\rm cme1}$ and k-number

 $\Delta V_c = (0.026k - 0.013)V_{CME1}^2 - (18k - 9.2)V_{CME1} + (2360k - 1019) \quad (\text{km s}^{-1})$ Or $\Delta V_c = (0.026V_{CME1}^2 - 18V_{CME1} + 2360)k - (0.013V_{CME1}^2 - 9.2V_{CME1} + 1019) \quad (\text{km s}^{-1})$

Diagram of the collision nature

Derive the k-number from in-situ data

Energy densityScaling law $\omega_k = \frac{1}{2}(m_p n_p v_p^2 + m_e n_e v_e^2)$ $\omega_k \propto r^{-3}$ $\omega_m = \frac{B^2}{2\mu}$ $\omega_m \propto r^{-4}$ $\omega_i = \frac{n_p k T_p + n_e k T_e}{\gamma - 1} = \frac{p_p + p_e}{\gamma - 1}$ $\omega_i \propto r^{-4}$ $\omega_g = -\frac{GM_s}{r}(m_p n_p + m_e n_e)$ $\omega_g \propto r^{-4}$

Average k-number of the events is 0.13

Summary

- A smaller approaching speed is more favorable for a super-elastic collision.
- The critical approaching speed is linearly correlated with the k-number and roughly quadratically correlated with the first CME's speed.
- A diagram is inferred. It is particularly useful in roughly estimating the collision nature as long as we know the values of the CMEs' speeds and the k-number, which are all possibly obtainable from observations.
- For a super-elastic collision, the extra kinetic energy gain could be from CME's magnetic energy and/or thermal energy.

Discussion

- Many influence factors are ignored, such as the magnetic field reconnection, shock, the approaching angle, the collision distance, background solar wind, CME mass change, etc.
 - The solar wind efficiency in acceleration CME is about 6.5% of the collision efficiency
 - Mass ratio of the two CMEs is not sensitive to the collision nature
 - The approaching angle does influence the results significantly ---simple 1D collision model is not appropriate
 - Expansion speed may also influence the results significantly --- a model of expanding elastic balls in 3D is more appropriate

Thanks for your attention!

Test the effects of background solar wind

