POD methods used in the analysis of the heat transport in the Solar Corona

Diana Gamborino Uzcanga, ICN-UNAM
Diego del Castillo Negrete, ORNL-EUA
y Julio J. Martinell, ICN-UNAM
Abstract

- Solar Corona heating mechanisms still not clear.

- Energy released mainly in AR - propagated to other regions - maintain Corona at observed T.

- Global heat transport influenced by complex \vec{B} geometry that couples distant regions of Corona.

- Produce nonlocal effects in the transport.

- EUV images - AIA/SDO. Three cases: (a) following an explosive event, (b) five hours before the explosive event, same AR and (c) Quiet Sun region.

- SolarSoft - T Maps - full solar disk.

- Regions of interest - selected and analyzed with POD methods.

- (1) Topos-Chronos: Energy cascade process determined - subdiffusion.

- (2) GLRAM: $w \sim t^\gamma$. W found $\gamma < 1$: subdiffusion.
Temperature Maps

SolarSoft

- AIA/SDO EUV filters: 94, 131, 171, 193, 211, 334 Å.

- Temperature resolution: 27 equi-spaced values in log scale
 \[\log T = 5.7 - 7.0 \text{ equivalent to} \ T = 0.5 - 10 \text{ MK} \].

- Maps have 1/10 th of original maps spatial resolution.

- Conversion to ASCII format to analyze with MatLab.
Original Temperature Maps of 3 cases:

(1) Flare event: GOES-class C8 at 20:00 UT in NOAA active region 1562.

(2) No flare: same active region at 15:00 UT.

(3) Quiet Sun: SE region at 20:00 UT. (snapshots every 5 minutes)
Temperature Maps Analysis:

T-Maps processing using POD

The POD methods, based on the Singular Value Decomposition (SVD), build a new base in which the data is represented in an optimal way.

This method is used to extract dominant features and coherent structures by identifying and organizing the dimensions in which the data exhibits more variation.

Once identified where there is more variation, it is possible to find the best approximation of the original data using fewer dimensions (truncation to a smaller range of the size of the original matrix).

- Topos-Cronos
- GLRAM
Singular Value Decomposition (SVD) is based on the factorization of matrix A as follows:

$$A = U\Sigma V^T,$$

Seen as a sum of tensor product:

$$A = \sum_{ij} A_{ij} = \sum_{k=1}^{N_{DVS}} \sigma_k u_k(x_i)v_k(y_j)$$

where: $N_{DVS} = \min\{N_x, N_y\}$.

Eckart-Young Theorem states that $A^{(r)}$ is the optimum approximation to the matrix A.

$$\| A - A^{(r)} \|^2 = \min\{\| A - B \|^2 | \text{rank}(B) = r \}$$

$$A^{(r)} = \sum_{k=1}^{r} \sigma_k u_k(x_j)v_k(y_j)$$
(Independent) Spatial and Temporal representation of the original data matrix.

Using the coordinate transformation: \(r_i \leftarrow (x_i, y_j) \) to \(T_i(x, y) |_{t_j} \) we get \(T(r_i, t_j) \), with dimension: \(N_x N_y \times N_t \).

The rank \(r \) tensor product decomposition of \(T \) is given by:

\[
T^r(r_i, t_j) = \sum_{k=1}^{r} \sigma^k u^k(r_i) v^k(t_j),
\]

where \(1 \leq r \leq N^* \) and \(N^* = \min[N_x N_y, N_t] \).
Topos Chronos-Solar Flare

Solar Flare, Topos-Chronos Decomposition

Topos $k=1$

Chronos $k=1$

Topos $k=2$

Chronos $k=2$

$k=3$

$k=3$

$k=4$

$k=4$

$k=20$

$k=20$

$k=30$

$k=30$

$k=40$

$k=40$

$k=46$

$k=46$
No Flare, Topos-Chronos Decomposition

Topos $k=1$

Chronos $k=1$

Topos $k=2$

Chronos $k=2$

Topos $k=3$

Chronos $k=3$

Topos $k=4$

Chronos $k=4$

Topos $k=20$

Chronos $k=20$

Topos $k=30$

Chronos $k=30$

Topos $k=40$

Chronos $k=40$

Topos $k=46$

Chronos $k=46$
Topos Chronos-Quiet Sun

Quiet Sun, Topos-Chronos Decomposition

Topos $k=1$
Topos $k=2$
Topos $k=3$
Topos $k=4$

Chronos $k=1$
Chronos $k=2$
Chronos $k=3$
Chronos $k=4$
Topos-Chronos Modes

Multi-scale Analysis
-Dominant mode: \(k=1 \).

- Low \(k \) exhibit low frequency variation and high \(k \) exhibit high frequency activity.

- Spatial scales diminish with \(k \) - granular type.

- Correlation between spatial and temporal scales as a function of rank should exist.

![Graph showing singular values for Flare, No Flare, and Quiet Sun](image)
Topos: Fourier Transform in x_i and y_j (folding unidimensional vector r_i) of $u_k \rightarrow \hat{u}_k(\kappa_{xi}, \kappa_{yj})$.

The characteristic length scale of rank-k is defined by: $\lambda(k) = 1/\langle \kappa \rangle$, where $\langle \kappa \rangle$ is defined as follows:

$$\langle \kappa \rangle = \frac{\sum_{i,j} |\hat{u}_k(\kappa_{xi}, \kappa_{yj})|^2 (\kappa_{xi}^2 + \kappa_{yj}^2)^{1/2}}{\sum_{i,j} |\hat{u}_k(\kappa_{xi}, \kappa_{yj})|^2}$$

Chronos Similarly with temporal scale τ. FFT of $v_k(t_m) \rightarrow \hat{v}_k(f_m)$ defines $\tau(k) = 1/\langle f \rangle$ with:

$$\langle f \rangle = \frac{\sum_{m} |\hat{v}_k(f_m)|^2 f_m}{\sum_{m} |\hat{v}_k(f_m)|^2}$$

Solar Flare case
Cascade process associated with non-diffusive transport: $\lambda \sim \tau^\chi$ with $\chi \neq 1/2$.
Spatio-Temporal Correlation

For the rest of the cases, no tendency was found.

No Flare

Quiet Sun
Energy content: \(E = \sum_{k=1}^{N^*} \sigma_k^2 \)

\(\sigma_k^2 \) gives the energy contribution of the \(k \)th-mode, and since \(\sigma_k \geq \sigma_{k+1} \), the POD can be seen as a decomposition of the data in terms of the energy content. (Futatani 2009)

Reconstruction error: Mean of rescaled PDFs given by:

\[RT = T_{or} - T^k \]

where \(RT \) measures the fluctuations.

PDFs calculated in space \(31 \times 31 \) divided in boxes, rescaled with \(\sigma \), averaged over time and normalized.

Stretched Exponential fit:

\[F(\mu, \beta) \propto \exp[-\beta |x|^\mu] \]
Normalized mean of rescaled PDF for % energy

Flare

\[\text{mu}=1.3 \]

No flare

\[\text{mu}=0.7 \]

QS

\[\text{mu}=0.9 \]
Normalized PDF of temperature fluctuations

- For Gaussian PDF the process is diffusive and non-chaotic.

- Intermittency arise in turbulent processes and these produce long tails in pdf (Futatani 2009). Without sources there is no intermittency.

Results:

- Intermittency observed a few hours before the solar flare takes place.

- In QS region no intermittency is registered.

- After Solar Flare event there is no intermittency and pdfs tend to the Gaussian.
Matrix approximation at any rank is again given by the SVD, except that in this method matrices U and V are independent of time, temporal information stored in the singular values matrix (M_j).

$$\min \sum_{i=1}^{n} \left\| T_i - LM_iR^T \right\|_F^2.$$
Area Method

One way to measure the diffusion is by calculating the area A variation between two fronts of the thermal pulse, T_1 and T_2, where $T_1 < T_2$. Thus we can see directly the relation: $A \sim \sigma^2 \sim t^\gamma$.

Normal Diffusion
From the Gaussian distribution of temperature:

$$T_i(r_i, t) = \frac{1}{\sqrt{4\pi t}} e^{-\frac{|r_i|^2}{4t}}$$

it follows that

$$\Delta A = 4\pi t \left[\log \left(\frac{T_2}{T_1} \right) \right] \sim t$$

Anomalous Diffusion
The solution of the fractional diffusion equation has an algebraic decay (like the Lévy function).

The area between two temperatures comes from the Green function of the fractional diffusion equation in which: $\langle r_i \rangle \propto [G(\eta_i)] t^{\gamma/2}$, therefore:

$$\Delta A \propto \pi [G(\eta_2)^2 - G(\eta_1)^2] t^{\gamma} \sim t^{\gamma}$$
Results

\[y = 0.7787x + 3.1206 \]
Conclusions

- **POD methods** provide an excellent tool for analyzing observations and provide information on the underlying physical processes.

- **Topos-Chronos**: Intermittency is present in active regions before appearance of solar flare but not in quiet regions.

- **Transport**: The multi-scale analysis shows a “slow” cascade energy process which is non-diffusive with $\lambda \propto \tau^{0.19}$.

- **GLRAM**: The area (point count) at each time between two contours goes like: $A_{21} \propto t^{0.77}$, i.e. $\gamma = 0.77$, which implies that the type of transport is subdiffusive.
Temperature maps have low spacial (400px) and temperature value resolution (27 values), therefore is difficult to distinguish the propagation of a thermal pulse.

More events have to be analyzed the work is still in process.

Solar Flare case: Total Heat Flux of thermal pulse

For the characterization of the transport of heat of the thermal pulse we considered that:

1. Heat Flux only along X axis.
2. Heat Flux of thermal pulse has two components, one due to convection and a the other diffusion (electrons).
3. Large field limit ($\omega_{c\alpha} \tau_{\alpha} \gg 1$, $\alpha = i, e$).
4. Internal Energy: $u = \frac{3}{2} n k_B T$ (monoatomic plasma), no work done ($W = 0$ $dU = Q$).
5. Constant density in time and uniform in space.
6. Control Volume: $\Delta V = \Delta x \Delta y \Delta z = \frac{L_x \times L_y \times h}{N_{Xpix} \times N_{Ypix}} = \frac{L^2 h}{N^2}$ where h is the width of the TR and $\lambda = (6 \text{arcsec} \times 7.15 \times 10^5 \text{m})$ is the conversion factor from pixels to meters.
Heat Flux Diagram - Control Volume.

Gamborino, del Castillo, Martinell (UNAM)
ISEST Mexico City 2015
October 27, 2015. 25 / 26
Total Heat Flux of the thermal pulse

The Total Heat Flux of the thermal pulse in the control volume is given by:

\[
\frac{3n k_B}{2} \frac{d}{dt} \iiint_V T dV = \frac{3n k_B}{2} \frac{d}{dt} \left[\sum_{i=1}^{N_x N_y} \sum_{k=1}^{N^*} \sigma^k u^k(r_i) v^k(t_j) \Delta V \right] = \oint_A \vec{q}_{Tot} \cdot d\vec{A}, \quad (1)
\]

where \(1 \leq r \leq N^*\) and \(N^* = \min[N_x N_y, N_t]\).

Using only the first mode \((r=1)\), the heat flux entering the is:

\[
\frac{q_1}{k_B} |_{t_j} = \frac{3}{2} \frac{n L}{N^2} \sum_{i=1}^{N_x N_y} u^1(r_i) \left(\frac{d v^1}{dt} \right) |_{t_j}.
\]

averaged over time gives:

\[
\langle q_1 \rangle_t = 1.618 \times 10^{26} \text{Km}^{-2}\text{s}^{-1}
\]

Using: \(n = 10^{15} \text{m}^{-3}\), \(T=2.5\) to 3.5 MK and convective velocity determined with GLRAM, the mean of the convective flux is given by:

\[
\frac{q_u}{k_B} = n T_e u_x = 1.85 \times 10^{26} \text{K/m}^2\text{s}
\]

This means that convection governs the transport of heat of the thermal pulse.