Statistical Analysis of Magnetic Cloud Erosion by Magnetic Reconnection

(1) IRAP, UPS-CNRS, Toulouse, France
(2) Space Science Center, University of New Hampshire, Durham, New Hampshire, USA
(3) Observatoire de Paris/LESIA, Meudon, France
(4) Instituto de Astronomía y Física del Espacio, Buenos Aires, Argentina
(5) Centre for Fusion Space and Astrophysics, University of Warwick, UK
(6) Space Environment Physics Group, Reading, UK
(7) UCAR, Boulder, USA
(8) Space Sciences Laboratory, University of California, Berkeley, USA,
Outline

• Introduction
• Event Study: 19-20 November 2007
 - Direct method
 - Signatures of reconnection
• Statistical Study
• Conclusion
Magnetic cloud characteristics

Basic properties:
Magnetic cloud can be distinguished by:

- Relatively strong magnetic field
- Large and smooth B-field rotation
- Lower temperature than average

Other signature: counter-streaming beam of suprathermal electrons [Gosling et al., 1987]

Magnetic structure:
Toroidal structure, different models:

- Cylindrical model (locally described as cylinder) [Lepping et al., 1990]
- Non-cylindrical model (expansion during propagation), ...

[Burlaga et al. 1981]
Erosion by magnetic reconnection

Recent observations of reconnection exhausts in solar wind (Gosling et al., 2005; Phan et al., 2006; Lavraud et al., 2009), some associated with CMEs (Farrugia et al., 2001)

Magnetic reconnection proposed as process to erode MC flux (McComas et al., 1988; Dasso et al., 2006)

MHD simulation of erosion

(Schmidt and Cargill, 2003; Taubenschuss et al., 2010)
Event Study

19-20 November 2007

Multi-spacecraft Analysis: ST-A, B, ACE, WIND, THEMIS B
Overview of the event: 19-20 November 2007

ACE, ST-A, ST-B locations and orientation of the axis derived from MVA

Event seen at ACE

Event also studied by Farrugia et al. (2011) and Gosling et al. (2008) for different purposes

→ 3-nicely separated spacecraft observation of a clean magnetic cloud
Direct Method (Dasso et al., 2006)

- Calculation of accumulative azimuthal flux along spacecraft trajectory (in proper frame).

- Asymmetry in the flux balance with excess flux at the back of the MC may reveal erosion by magnetic reconnection at its front.

- Accumulative flux per unit length:

\[
\frac{F_y(x)}{L_{in}} = \int_{t_{in}}^{t(x)} B_{y,cloud}(t') * V_{x,cloud} \, dt'
\]
Direct Method (Dasso et al., 2006)

- Calculation of accumulative azimuthal flux along spacecraft trajectory (in proper frame).

- Asymmetry in the flux balance with excess flux at the back of the MC may reveal erosion by magnetic reconnection at its front.

- Accumulative flux per unit length:

\[
\frac{F_y(x)}{L_{in}} = \int_{t_{in}}^{t(x)} B_{y,\text{cloud}}(t') \ast V_{x,\text{cloud}} \, dt'
\]
Direct Method - Results

Cloud axis determination:
1) MVA (minimum variance analysis) AND bootstrap error estimates
2) Cloud-fitting method: MC is described by a force-free model

→ Presence of back region with excess flux at both ST-A and ACE
Local reconnection

Reconnection signatures

- Presence of bifurcated current sheets
 - At all spacecraft

- Valid Walén test
 - At ST-A and THEMIS
 (ACE and ST-B too coarse resolution)

Reconnection signatures found at front of MC at each spacecraft
Statistical study (with WIND data)

- Lepping List 1995-2008 → 109 cases examined
- Boundary determination: ‘case by case’
- Axis orientation with MVA and FRF
- Looking for erosion at the front AND at the rear!

Selection Criteria:

Boundaries well determined + Axis orientation from MVA

- Angle $-45^\circ < \lambda < 45^\circ$ → not crossing a leg
- Ratio intermediate / minimum eigenvalue >2
- Ratio maximum / intermediate eigenvalue >2
- $\Delta\theta$ and $\Delta\phi < 15^\circ$ (error estimates from bootstrap method)
- Impact parameter < 0.6

= 42 MCs (remaining/109)

Janvier et al. [2013]
Results from MVA

Signature of MC erosion with direct method for 42 MCs

Distribution:
53% MCs eroded at the front

ΔV Vs. Amount of azimuthal eroded flux

47% MCs eroded at the rear

\Rightarrow No correlation found between ΔV (MC mean speed – Solar Wind Speed before the front boundary) and the amount of eroded flux at the front and at the rear of the MCs
Signature of magnetic reconnection

Presence of magnetic reconnection signatures at FRONT and REAR boundaries

Categorization of Exhausts
→ Walén Test and Data quality

- **At the front boundaries:**
 For the set of MCs where front boundaries are well localized
 16 signatures = 20%

- **At the rear boundaries:**
 For the set of MCs where rear boundaries are well localized
 16 signatures = 31%
Conclusion

Summary of signatures compatible with MC erosion

- Acc. Azimuthal Flux (Dasso et al. 2006, direct method)
- Reconnection signatures at MC boundaries
- Pitch Angle Distributions of suprathermal electrons in MC back show clear changes as compared to the core of the MC (not shown here)

Statistical Study

- 47% MCs eroded at the rear and 53% at the front
- 31% reconnexion signatures found at the rear and 20 % at the front
- No correlation found between local ΔV and amount of eroded flux

→ Impact on geo-effectiveness