Combining Models, Theory and Observations to Reconstruct CME and Shock Morphology

Phillip Hess, Jie Zhang

School of Physics, Astronomy and Computational Sciences George Mason University Fairfax, VA SCOSTEP 13 Xi'an, China October 18, 2014

Introduction

- The goal of this work, like ISEST itself, is to drive analytical and numerical models with observational data for a series of geo-effective CMEs
- We want to address both the scientific question of physical processes governing CME evolution and the more practical aspect of space weather forecasting
- One key for both purposes is be the treating of the CME driver (flux rope) and shock as distinct features in the heliosphere
- For more detail on our methods, see Hess & Zhang Apj. 2014

Observations: In-situ

Observations and Measurement: Remote-Sensing

Theoretical Model: Drag Model

- To get an accurate kinematic profile, we fit the height-time measurements
- We use the Drag-Based Model (Vrsnak et al. 2013), which assumes that aerodynamic drag force dominates CME propagation

$$a(t) = -\gamma (v(t) - v_{sw}) |v(t) - v_{sw}|$$

$$v(t) = \frac{v_0 - v_{sw}}{1 + \gamma (v_0 - v_{sw})t} + v_{sw}$$

$$r(t) = \frac{1}{\gamma} \ln [1 + \gamma (v_0 - v_{sw})t] + v_{sw}t + r_0$$

Drag Model Fitting Result

	$\gamma~(/{\rm km})$	V_0	V_f	$R_0(R_S)$	In-Situ	Drag	ΔT
		$(\rm km/s)$	$(\rm km/s)$		Velocity	Model	(hours)
					$(\rm km/s)$	$(\mathrm{km/s})$	
Flux Rope	3.09e-8	1316.5	353.7	4.29	487.7	477.9	.69
Shock	1.47e-8	1259.4	353.7	8.69	608.3	625.5	.89
Flux Rope	6.15e-8	1423.8	500	4.29	487.7	571.5	-3.8
Prediction							
Shock	4.77e-8	1548.6	500	8.69	608.3	598.9	4.2
Prediction							

Implications of Drag Fittings

- While traveling at similar speeds near the Sun, the flux rope appears to undergo a rapid deceleration early in its propagation from the Sun to the Earth. The shock undergoes a much more gradual decrease as it propagates
- This also means, the standoff distance begins increasing linearly, but eventually the rate of this increase may slow down as the speeds converge to V_{sw}

Drag Fittings as Predictive Model

Comparison to Numerical Models: COIN-TVD

 Using our data as inputs, the CME was simulated with the COIN-TVD model (Shen et al 2014)

Figures and Data Courtesy D. Odstrcil

STEREO A Jmap (P.A.=99)

STEREC B Jmap (P.A.=261)

Comparison to Numerical Models: ENLIL

EARTH

Figures and Data Courtesy D. Odstrcil

Physical Findings and Future work

- For all well observed events studied, the shock decelerates more gradually than the flux rope
- The drag model does well in capturing measurements of each separate front, but how exactly is the drag being controlled? Does shock propagation have an additional term?
- Does the standoff distance follow consistent and predictable behavior for fast CMEs? Can we use the standoff distnace to help determine physical properties during CME propagation
- We will also compare the drag model profiles to the Eruptive Flux Rope Model (Chen et al 1996) to determine the importance of magnetic forces

Applications For Forecasting and Drawbacks

- Without having any knowledge of the ambient solar wind environment, the drag model can still do reasonably well at forecasting, and with just a little bit of input data can be run quickly and repeatedly.
 - Good measurements shortly after eruption are needed
 - Complex events cannot be captured
- Accurate V_{sw} models can further constrain predictions
- We must study a statistically significant number of events and also compare to simulation to accurately predict drag
- An empirical model like this need not compete with numerical forecasting models, but can be used side by side to improve them

Thank you all for your attention

We encourage you all to visit and contribute to the ISEST Event Wiki (http://solar.gmu.edu/heliophysics)

With Questions or Comments contact me at phess4@gmu.edu

Figure and Data Courtesy D. Odstrcil

	GAMMA	V_0	1	/_F		R_0		Т	d	IT	V			TESA	Tdesa
2010-04-03	2.8091382e-08	98	8.74812	512	.40002		6		46.6		-8.46	6	44.6	50.3364042	-3.7364042
	4.0330168e-08	89	2.99465	512	.40002		5.5		50.1		-10.3	6	01.2	55.79172308	-5.69172308
2010-05-27	5.9977073e-08	63	9.66562	362	.29999	14	1.835299		83.1		-3.44	4	08.4	74.2220389	8.877961104
	1.9762295e-07		700	362	.29999	4.	5956402		88.1		-11.6	3	75.8	69.23314229	18.86685771
2011-09-14	8.2629160e-08	51	9.45986	396	.89999	22	2.521601		73.6		-13.5	42	7.63	85.48564475	-11.8856447
	6.8357169e-07	65	0.49362	396	.89999	5.	3045201		81.6		-16.2		401	73.2959368	8.304063205
2012-03-07	1.2062524e-08		3223.3	289	.29999		11.2613		34.3		7.68	8	92.9	13.38808235	20.91191765
	1.5238070e-08		2666.8	289	.29999	9.	8299999		43.3		9.13	7	04.2	15.44750969	27.85249031
2012-07-12	2.7765080e-08	14	68.5346	353	.70001	8.	6863604		48.4		-8.63	5	06.5	31.61683347	16.78316653
	3.6328909e-08	1	.388.337	353	.70001	4.	2897301		62		-3.49	4	58.5	33.95234174	28.04765826
2012-09-28	3.8493893e-08	10	84.5798	310	.39999	16	6.295401		70.6		-3.43		398	45.5508431	25.0491569
	4.1096929e-08	12	18.4183	310	.39999	6.	3045206		83.6		6.59	3	90.4	39.84023682	43.75976318
2012-10-05	3.3830160e-08	81	6.51022	328	.79999	12	2.643499		70.6		-5.61		417	60.69613255	9.903867453
	3.1233322e-08	72	8.38013	328	.79999		11.5682		83.6		4.95	4	17.9	67.02589731	16.57410269
2012-10-27	9.9999997e-10	42	7.78379	289	.79999	24	1.059099		94.9	C).698	4	22.1	95.41927077	-0.51927077
	9.9999997e-10	39	4.13749	289	.79999	6.	2272301		103.9	C).253	3	90.3	99.39104181	4.508958188
2013-03-15	2.6733692e-08	12	77.9352	429	.29999	7.	8414998		46.1		-6.7		589	37.61959755	8.480402453
	1.2765252e-07		1400	429	.29999	7.	3757496		64.6		-10.9	4	57.3	33.59647154	31.00352846

