Remote Worlds

Chapter Fourten

ASTR 111 – 003 Lecture 12 Nov. 19, 2007

Introduction To Modern Astronomy I: Solar System

Update on Pluto

- International Astronomical Union (IAU) voted on the redefinition of planets in Prague on Aug. 24, 2006.
- Pluto is no longer a planet
 - Pluto is called a "dwarf planet"
- 2003 UB, once proposed as 10th planet, is also a "dward planet"
- In this book, pluto is also called a "trans-Neptunian object".
 - As of 2006, ~ 1100 such objects have been found

Uranus Data

table 16-1

Uranus Data

19.194 Al	Average distance from Sun:
20.017 AL	Maximum distance from Sun:
18.371 AL	Minimum distance from Sun:
0.0429	Eccentricity of orbit:
6.83 km/s	Average orbital speed:
84.099 ye	Orbital period:
17.24 hou	Rotation period (internal):
97.86°	Inclination of equator to orbit:
0.77°	Inclination of orbit to ecliptic:
51,118 kn	Diameter:
8.682 × 10	Mass:
1318 kg/r	Average density:
21.3 km/s	Escape speed:
0.90	Surface gravity (Earth = 1):
0.56	Albedo:
-218°C =	verage temperature at cloudtops:
82.5% hyd	Atmospheric composition
2.3% met	(by number of molecules):

 $J = 2.871 \times 10^9 \text{ km}$ $= 2.995 \times 10^9$ km $= 2.748 \times 10^{9}$ km ars n = 4.007 Earth diameters (equatorial) P^{25} kg = 14.53 Earth masses $-360^{\circ}F = 55 K$ drogen (H₂), 15.2% helium (He), hane (CH₄)

Discovered in 1781 by chance, with the aid of a good telescope

Neptune Data

table 16-2

Neptune Data

Average distance from Sun: Maximum distance from Sun: Minimum distance from Sun: Eccentricity of orbit: Minimum distance from Sun: Eccentricity of orbit: Average orbital speed: Orbital period: Rotation period (internal): Inclination of equator to orbit: Inclination of orbit to ecliptic: Diameter:

Mass: Average density: Escape speed: Surface gravity (Earth = 1): Albedo: Average temperature at cloudtops: Atmospheric composition (by number of molecules): $30.066 \text{ AU} = 4.498 \times 10^9 \text{ km}$ $30.367 \text{ AU} = 4.543 \times 10^9 \text{ km}$ $29.765 \text{ AU} = 4.453 \times 10^9 \text{ km}$ 0.010 $29.765 \text{ AU} = 4.453 \times 10^9 \text{ km}$ 0.010 5.5 km/s 164.86 years 16.11 hours 29.56° 1.77° 49,528 km = 3.883 Earth diameters (equatorial) 1.024×10^{26} kg = 17.15 Earth masses 1638 kg/m³ 23.5 km/s 1.1 0.51 $-218^{\circ}C = -360^{\circ}F = 55 \text{ K}$ 79% hydrogen (H_a), 18% helium (He), 3% methane (CH,)

Discovered in 1846 by calculation, the triumph of science

Pluto Data

tab. 16-3

Pluto Data

Average distance from Sun Maximum distance from Sun: Minimum distance from Sun: **Eccentricity of orbit:** Average orbital speed: **Orbital period: Rotation period:** Inclination of equator to orbit: Inclination of orbit to ecliptic: **Diameter:** 1.3 Mass: Average density: Escape speed Surface gravity (Earth = ____): 0.07 Jedo: 0.5

 $39.537 \text{ AU} = 5.915 \times 10^9 \text{ km}$ $425 \text{ AU} = 7.394 \times 10^9 \text{ km}$ 29.64 $10 = 4.435 \times 10^9$ km 0.2501 4.7 km/s 248.60 years 6.387 days 122.52° 17.146° about 1 J0 km = 0.18 Earth diameter 10^{22} kg = 0.0021 Earth mass Jout 1900 kg/m³ 1.2 km/s

Average surface te perature:

: $-233^{\circ}C = -387^{\circ}F = 40 \text{ K}$

Discovery

- Other than those planets seen by naked eyes, Uranus and Neptune were discovered by telescopes
- Uranus was recognized as a planet by chance observation in 1781 by William Herschel
- Neptune's position was predicted using Newtonian laws before it was discovered in 1846
 - Slight deviations in Uranus' orbit indicated the presence of an undiscovered planet, which gravitation altered Uranus' orbit
 - The position of Neptune was predicted by Le Verrier and Adams
 - A triumph of scientific reasoning, based on the truth of Newton's law of universal graviation

Uranus: Atmosphere

- Uranus is nearly featureless in visible light
 - Covered by atmosphere
 - Filled with hydrocarbon haze
- Atmosphere is primarily hydrogen (82.5%) and helium (15.2%), and 2.3% methane
- Methane absorbs red light, giving Uranus (and Neptune) their greenish-blue color
- Less cloudy than in Jupiter and Saturn; ammonia and water have precipitated out the atmosphere at the very low temperature

Uranus: Unusual Tilt

- Uranus's axis of rotation lies nearly in the plane of its orbit.
- This unusual orientation may be the result of a collision with a planetlike object early in the history of solar system. Such a collision could have knocked Uranus on its side
- Along its 84-year orbit, north and south poles alternatively point toward or away from the Sun, causing long seasons
- Seasonal changes may trigger immense storms

Neptune: Atmosphere

- Neptune has almost the same atmospheric composition as Uranus: 79% hydrogen, 18% helium, 3% methane, and almost no ammonia or water
- Unlike Uranus, Neptune has a more dynamic atmosphere
 - Neptune has the Great Dark
 Spot, a storm system similar to
 Jupiter's Great Red Spot
 - Has light zones and dark belts
 - Has high-altitude methane clouds

Neptune: Atmosphere

- Why does Neptune have a more dynamic atmosphere, even if it receives less sunlight than Uranus?
 - It has sufficient internal heat
 - Neptune is probably still slowly contracting, converting gravitational energy that heats the planet's core
 - Observations show that Neptune emits more energy than it receives from the Sun
 - However, Uranus radiates as much energy into space as it receives from the Sun, indicating no internal source of thermal energy

Interior Structure

- Density (~ 1500 kg/m³) indicates a mixture of ice and rock
- Magnetic field indicates the presence of salty liquid water
- Both Uranus and Neptune may have
 - A rocky core
 - A mantle of liquid water and ammonia
 - An outer layer of mantle of liquid hydrogen and helium
 - A thin layer of atmosphere of hydrogen and helium

Rings

• Uranus and Neptune have thin, dark rings.

Rings

 Rings were first discovered with the so called "occultation" method in 1977

Uranus: Satellites

Uranus has five satellites similar to the moderate-sized moons of Saturn, plus at least 22 more small satellites
All these moons have average density around 1500 kg/m³, consistent with a mixture of ice and rock

Neptune: Satellites

- •Neptune has 13 known satellites
- •Triton, the largest satellite, is comparable in size to our Moon.
- •Triton has a young, icy surface indicative of tectonic activity
- •The energy for this activity may have been provided by tidal heating
 - occurred when Triton was captured by Neptune's gravity into a retrograde orbit

Triton

Pluto

- Pluto was discovered in 1930 after a long search for the ninth planet
- Pluto moves in a highly elliptical orbit
 - Eccentricity 0.25
 - Sometimes within the orbit of Neptune
- Pluto's orbit is steeply inclined to the plane of ecliptic (17°)

Pluto and Charon

- Pluto (2300 km) and its satellite Charon (1200 km) resembles each other in mass and size more than any other planet-satellite pair in the solar system.
- The distance is also the smallest, 19,640 km
- **Both rotate in lockstep**: Charon's orbit period is the same as its rotational period, and also the same as the Pluto's rotation period (6.3 days)
 - Both keep the same face toward each other
 - As seen from Pluto, Charon neither rises nor sets

Trans-Neptunian Objects

- Trans-Neptunian objects: objects whose orbits have semi-major axiss larger than that of Neptune.
- Pluto and Charon are now thought to be trans-Neptunian objects
- More than one thousand trans-Neptunian objects have been found, and at least nine of these objects have satellites of their own

Trans-Neptunian Objects

Kuiper Belt

- **Kuiper Belt:** lies beyond the orbit of Neptune between 30 and 50 AU from the Sun
- Most trans-Neptunian objects lie within Kuiper belt.
- Kuiper belt is produced by the gravitational forces of Jovian

Kuiper belt

another star

Kuiper Belt

•NASA's New Horizons

- Jan. 19, 2006: launched
- July 2015: Pluto-Charon encounter
- 2016-2020: Kuiper Belt Object Encounter

Final Notes on Chap. 16

- There are 10 sections in total.
- The following sections are not covered
 - 16-5 (magnetic field)

Advanced Question Chap. 14, Q7 in P372

Explain the statement "Methane" is to Uranus's atmosphere as water is to Earth's atmosphere?

Advanced Question Chap. 14, Q43 in P373

The New Horizons spacecraft will swing by Jupiter to get a boost from that planet's gravity, enabling it to reach Pluto relatively quickly. To see what would happen if this technique were not used, consider a spacecraft trajectory that is an elliptical orbit around the Sun. The perihelion of this orbit is at 1 AU from the Sun (at the Earth) and the aphelian is at 30 AU (at Pluto's position). Calculate how long it would take a spacecraft in this orbit to make the one-way trip from Earth to Pluto. Based on the information in section 14-10, how much time is saved by making a swling by Jupiter instead?