Our Barren-Moon Chapter Ten

ASTR 111 – 003 Lecture 09 Oct. 29, 2007

Introduction To Modern Astronomy I: Solar System

Earth-Moon System

Moon, diameter = 3476 km

Average Earth-Moon distance = 384,400 km

(a) The Earth-Moon system

- Diameter: 3476 km, or 27% of Earth
- Mass: 1.23% of Earth Mass
- Density: 3344 kg/m³
- Average distance: 384,400 km, or ~ 30 Earth diameter
 - Round-trip of light: 2.6 sec
 - Spacecraft at 10 km/s: 10 hours
 - Car at 60 mi/hr: 167 days
- Elliptical orbit: eccentricity 0.05
- Inclination of orbit to ecliptic: 5°
- Inclination of lunar equator to orbit: 7°

Earth-Moon System

• Liberation:

1003001.mov

- The synchronous rotation of Moon is not perfect.
- It wobbles slightly, rocking back and forth around its north-south axis and nodding up and down in a northsouth direction.
- The liberation permits us to view 59% of the Moon's surface
- The liberation is caused by the Moon's non-circular orbit and the inclination angle
- Earth and Moon both orbit around a point between their centers called the **center of mass**
 - The center of mass is very close to the Earth's center

Moon's Atmosphere

- None
 - The gravity is too weak to retain any atmosphere

(b) The Earth and Moon to scale, shown 10 times larger than in part (a)

Moon's Surface

- Extremely old surface
 - Covered with numerous
 craters, e.g, 30,000 craters
 larger than 1 km/s
 - These are impact craters.
 - no plate tectonic activity on the Moon
 - Moon is too small to retain internal heat
 - The entire crust is a single plate

Moon's Surface

- 1. Maria (mean "sea")
 - the dark area
 - low-lying plains
 - 15% of surface

2. Highlands

- the light-colored area
- highlands on the Moon
- 85% of surface

Moon's Surface

• Maria

- Maria have relatively less denser craters
- Maria (~ 4.0 billion years) are relatively younger than highlands (~ 4.5 billion years).
- Mare basin was caused by impacts of very large meteoroids or asteroids at a later time (~ 4.0 billion years ago)
- Lunar crust is cracked by the large impact, causing lava flooding the basin
- dark color is due to solidified lava

Human Exploration

- From 1969 to 1972, 12 astronauts walked on the Moon, through 6 successful manned landings
- July 21, 1969, 2:56 UTC, Armstrong put his left foot on the surface, and spoke
 - That's one small step for (a) man, one giant leap for mankind.

Human Exploration

- About 400 kg of lunar materials have been brought back by Apollo astronauts
- Seismic equipment have been put on the Moon to detect moonquakes and deduce the structure of the moon's interior
- Mirrors have been put on the Moon to measure the accurate Earth-Moon distance using Laser light: moon spiraling away at 3.8 cm/year

Human Exploration

- The second race to the Moon
 - Aim to set up large and permanent bases
 - NASA's Constellation Project
 - Send astronauts back to Moon in 2018
 - Build a large scale Moon base in the next 25 years
 - China's Chang'e project
 - Chang'e 1 launched on Oct. 24, 2007
 - Japan's moon project
 - Kaguya spacecraft launched on Sep. 14, 2007

Internal Structure

- Like the Earth, the Moon has **crust**, **mantle**, and **core**
- Core:
 - ~700 km in diameter, relatively small
 - iron rich, partially liquid
 - not producing global magnetic field
- Moon's solid lithsophere is about 800 km thick
 - In contrast, the Earth's lithosphere is only 50 km thick

Moonquake

- Moonquakes are measured by seismometer set up by astronauts
- Moonquakes are rare in frequency and small in scale
- Originate 800 km below the surface, marking the boundary between solid lithosphere and plastic asthenosphere
- The moonquakes are caused by the Earth's tidal force
 - Tidal force deforms the solid body of the Moon
 - The force is greatest when the moon at perigee (most frequent quakes are observed)
 - The force is weakest when the moon at apogee

Formation of the Moon

• Collisional-ejection theory:

- the proto-Earth was struck by a Mars-sized protoplanet
- debris from this collision coalesced to form the Moon
- This theory explains
 - Low density of Moon
 - Small core of Moon
 - Because the Earth's iron has sunk to its center due to chemical differentiation, little iron would have been ejected from the surface

Formation of the Moon

• Collisional-ejection theory:

Tidal Forces

- The Earth's tidal force on the Moon produces the synchronous rotation of the Moon
- The Moon's tidal force on the Earth slows down the Earth's rotation, through the friction between Earth and its bulged oceans; 0.002 sec per century

Final Notes on Chap. 10

- There are 5 sections in total
- Section 10-4 (on Moon rocks) is not covered