ASTR 111 – 003 Lecture 01 Aug. 27, 2007

Introduction To Modern Astronomy I: Solar System

Introducing Astronomy (chap. 1-6)

> Planets and Moons (chap. 7-15)

Chap. 16: Our Sun Chap. 28: Search for Extraterrestrial life Ch1: Astronomy and the Universe

Ch2: Knowing the Heavens Ch3: Eclipses and the Motion of the Moon Ch4: Gravitation and the Waltz of the Planets Ch5: The Nature of Light Ch6: Optics and Telescope

Highlights

-A total lunar eclipse Tuesday morning, Aug. 28, 2007

	EDT	PDT
 Partial eclipse begins: 	4:51 AM	1:51 AM
 Total eclipse begins: 	5:52 AM	2:52 AM
 Total eclipse ends: 		4:23 AM
 Partial eclipse end: 		5:24 AM

Google Earth "searches" the sky.

Astronomy Picture of the Day (2007/08/27)

Huge Void in Distant Universe

Today's Sun (2007/08/27)

Astronomy and the Universe Chapter One

Scientific Methods

Scientific Method

- based on observation, logic, and skepticism

Hypothesis

a collection of ideas that seems to explain a phenomenon

Model

 hypotheses that have withstood observational or experimental tests

Theory

 a body of related hypotheses can be pieced together into a self consistent description of nature

Laws of Physics

 theories that accurately describe the workings of physical reality, have stood the test of time and been shown to have great and general validity

Example

Theory: Earth and planets orbit the Sun due to the Sun's gravitational attraction

Formation of Solar System

The Sun and Planets to Scale

- By exploring the planets, astronomers uncover clues about the formation of the solar system
 - Terrestrial and Jovian Planets
 - Meteorites. 4.56 billion years
 - Solar nebula

Evolution of Stars

Thermonuclear reaction; H-bomb

 A star has a full life cycle: be born, evolve, and die

Origin and Fate of the universe

- Galaxies are flying away from each other
- Expanding universe
- Big bang theory

- Denote position and size of astronomical object
- degree (°): the basic unit of angular measure
 - One entire cycle is 360°
- Angular diameter, or angular size
 - The Moon is $\frac{1}{2}^{\circ}$, and also the angular size of the Sun

Angular distance: If you draw lines from your eye to each of two stars, the angle between these lines is the angular distance.

The adult human hand held at arm's length provides a means of estimating angles

- About 10° for the fist
- About 1° for the finger

- Subdivide one degree into 60 arcminutes
 - minutes of arc
 - abbreviated as 60 arcmin or 60'
- Subdivide one arcminute into 60 arcseconds
 - seconds of arc
 - abbreviated as 60 arcsec or 60"

1° = 60 arcmin = 60'

1' = 60 arcsec = 60"

For example

- Moon: 0.5°, 30 arcmin, or 1800 arcsec
- Saturn: 20 arcsec
- A star: much less than 1 arcsec, can not be resolved by any telescopes

Small angle formula

- D: linear size of an object
- d: distance to the object
- α : angular size of the object, in arcsec

 $D = \alpha d / 206265$

- If same linear size, the more distant the object, the smaller the angular size
- If same angular size, the more distant the object, the greater its actual (linear) size

Powers-of-ten notation

Powers-of-ten notation

10ⁿ: Number 10 is multiplied n times

- 10⁵: 10X10X10X10X10

10⁻ⁿ: number 10 is divided n times

- 10⁻⁵: 1/10 X 1/10 X 1/10 X 1/10 X 1/10

Example

- Earth diameter: 1.28 X 10⁴ km
- Sun's diameter: 1.39 X 10⁶ km
- Sun-Earth distance: 1.50 X 10⁸ km
- One light year: 9.46 X 10¹² km
- One year: 3.16 X 10⁷ s
- Mass of the Sun: 1.99 X 10³⁰ kg
- Mass of Proton: 1.67 X 10⁻²⁷ kg

Units of Astronomical Distances

Astronomical Unit (AU)

- One AU is the average distance between Earth and Sun
- 1.496 X 10⁸ km or 92.96 million miles
- Jupiter: 5.2 AU from the Sun

Light Year (ly)

- One ly is the distance light can travel in one year at a speed of about 3 x 10⁵ km/s or 186,000 miles/s
- 9.46 X 10¹² km or 63,240 AU
- Proxima Centauri, the nearest star: 4.2 ly

Parsec (pc)

- the distance at which 1 AU subtends an angle of 1 arcsec
- $-1 \text{ pc} = 3.09 \times 10^{13} \text{ km} = 3.26 \text{ ly}$
- Milky Way galaxy: 50 kpc

Units of Astronomical Distances

Final Notes on Chap. 1

- There are 8 sections. Section 1 to 7 are studied
- There are 3 boxes. Box 1 and 2 are studied.

Advanced Question Chap. 1, Q37 in P18

Suppose your telescope can give you a clear view of objects and features that subtend angles of at least 2 arcsec. What is the diameter in kilometers of the smallest craters you can see on the Moon?