Red Planet Mars Chapter Thirteen

ASTR 111 – 003 Lecture 11 Nov. 13, 2006

Introduction To Modern Astronomy I

Introducing Astronomy (chap. 1-6)

Planets and Moons (chap. 7-17)

Ch7: Comparative Planetology I

Ch8: Comparative Planetology II

Ch9: The Living Earth

Ch10: Our Barren Moon

Ch11: Sun-Scorched Mercury

Ch12: Cloud-covered Venus

Ch13: Red Planet Mars

Ch14: Jupiter and Saturn

Ch15: Satellites of Jup. & Saturn

Ch16: Outer World

Ch17: Vagabonds of Solar System

Guiding Questions

- 1. When is the best to see Mars in the night sky?
- 2. Why was it once thought that there are canals on Mars?
- 3. How are the northern and southern hemispheres of Mars different from each other?
- 4. What is the evidence that there was once liquid water on Mars?
- 5. Why is the Martian atmosphere so thin?
- 6. What have we learned about Mars by sending spacecraft to land on its surface?
- 7. What causes the seasonal color changes on Mars?
- 8. As seen from Mars, how do the Martian moons move across the sky?

Mars Data

table 13-1

Mars Data

Average distance from Sun: $1.524 \text{ AU} = 2.279 \times 10^8 \text{ km}$

Maximum distance from Sun: $1.666 \text{ AU} = 2.492 \times 10^8 \text{ km}$

Minimum distance from Sun: 1.381 AU = 2.067×10^8 km

Eccentricity of orbit: 0.093

Average orbital speed: 24.1 km/s

Orbital period: 686.98 days = 1.88 years

Rotation period: 24h 37m 22s

Inclination of equator to orbit: 25.19°

Inclination of orbit to ecliptic: 1.85°

Diameter (equatorial): 6794 km = 0.533 Earth diameter

Mass: $6.418 \times 10^{23} \text{ kg} = 0.107 \text{ Earth mass}$

Average density: 3934 kg/m³

Escape speed: 5.0 km/s

Surface gravity (Earth = 1): 0.38

Albedo: 0.15

Surface temperatures: Maximum: $20^{\circ}C = 70^{\circ}F = 293 \text{ K}$

Mean: $-53^{\circ}C = -63^{\circ}F = 220 \text{ K}$

Minimum: $-140^{\circ}C = -220^{\circ}F = 133 \text{ K}$

Atmospheric composition 95.3% carbon dioxide (CO₂)

(by number of molecules): 2.7% nitrogen (N_2)

0.03% water vapor (H₂O)

2% other gases

Earth-based observations

- The best Earth-based views of Mars are obtained when Mars is simultaneously at
 - 1. opposition and
 - 2. near perihelion

 At favorable opposition, the Earth-Mars distance can be as small as 0.37 AU, and angular diameter can be as large as 25 arcsec

Earth-based Observations

- Mars has a thin, almost cloudless atmosphere that permits a clear view of the Surface
- A solar day on Mars is nearly the same length as on Earth
- Mars has polar caps that expand and shrink with the seasons
- The Martian surface undergoes seasonal color changes

Earth-based observations

- A few observers, in 19th century, reported a network of linear features called canals
- These observations, led to many speculations about Martian life
- However, it is proven that the canals are illusion.

- Since 1960s, Mars have been regularly visited by unmanned spacecraft and their landing modules.
- The Martian surface has numerous craters, several huge volcanoes, a vast rift valley, and dried-up riverbeds— but no canals

- Martian surface is largely covered by craters
- Some martial surface must be extremely ancient

(a) Mars from the Hubble Space Telescope

(b) Closeup of Sinus Sabeus region

- Olympus Mons: the largest volcano in the solar system, 600 km across, 24 km above the surrounding plains, the scarps (or cliffs) 6 km high
- It was probably formed by hot-spot volcanism: magma wells up from a hot spot in a planet's mantle over a long time, e.g., millions of years
- The huge size of Olympus Mons, instead a chain, indicates the absence of planet tectonics.

- Southern highlands versus northern lowlands: dichotomy
 - The average elevation of southern highlands is about 5 km higher than that of northern lowlands
 - Surface in the south is relatively older, because of numerous craters
 - Surface in the north is smooth and free of craters

- No liquid water or rainfall on the planet's surface today
- Liquid water once flowed on March, as evident in many surface features
- E.g., dried riverbeds on the Martian surface
- "Island" carved by flash flood

Sustained water carved out canyons

Mud flow feature indicates a subsurface layer of water ice

 Gullies have formed by subsurface water seeping out to the surface

Mars's polar caps contain frozen water

 The Martian polar caps expand in winter as a thin layer of frozen carbon dioxide (dry ice) is deposited from the

atmosphere

- Frozen water is contained in polar caps
- Frozen water is stored in permafrost under the Martian surface
- There might be enough water to cover the planet to a depth of 500 meters

Percent abundance of water (by mass)

- The present Martian atmosphere is composed mostly of carbon dioxide
- The atmospheric pressure on the surface is less than 1% that of the Earth and shows seasonal variations as carbon dioxide freezes onto and evaporates from the poles
- Mars and Earth began with similar primordial atmosphere that evolved differently
 - Mars has relatively weaker gravity
 - Mars is geologically inactive

- Water and carbon dioxide molecules are broken into atoms, which then escape into space, thanks to the weaker gravity of the Mars
- This weakened the greenhouse effect, and caused the temperature to drop
- A lower temperature caused more water vapor to condense to the surface, carrying carbon dioxide
- This further reduced the temperature, caused a runaway icehouse effect, opposite to the runaway greenhouse effect occurred on Venus
- The remaining water is frozen underneath the surface
- The remaining CO₂ is locked in the rocks; it is not recycles into the atmosphere, thanks to the inactivity

- The remaining water is frozen underneath the surface
- The remaining CO₂ is locked in the rocks; it is not recycles into the atmosphere, thanks to the inactivity
- This resulted in a thin Martian atmosphere

 Clouds are made of tiny water ice crystals as well as crystal of carbon dioxide ice (dry ice)

Clouds Above Mars' Mountains

• When temperature rises during the spring, CO₂ frost evaporates, and trigger the dust storm

 When temperature decreases during the winter, freezing CO₂ adheres to water ice and dust grain in the air, causing them to fall to the ground

Exploration

- Many spacecraft have been sent to study the Mars, including both orbiting and landing spacecraft
- In 1970s, Viking 1 and Viking 2 Landers
- In 1997, Mars Pathfinder Lander called Sojourner
- In 2004, Mars Exploration Rovers: Spirit and Opportunity
- Human exploration on Mars is now under development

(a) A rover on Mars

Two generations of rovers

Exploration

Final Notes on Chap. 13

- There are 8 sections in total.
- Section 13-7 (on seasons) and 17-8 (on Moons) are not studied