ASTR 111 – 003 Lecture 01 Aug. 28, 2006

Introduction To Modern Astronomy II

Fall 2006

Astronomy and the Universe Chapter One

Guiding Questions

- 1. What methods do scientists use to expand our understanding of the universe?
- 2. What makes up our solar system?
- 3. What are the stars? Do they last forever?
- 4. What are galaxies? What do astronomers learn by studying them?
- How does measuring angles help astronomers learn about objects in the sky?
- 6. What is powers-of-ten notation, and why is it useful in astronomy?
- 7. Why do astronomers measure distances in astronomical units, light-years, and parsecs?
- 8. How does studying the cosmos help us on Earth?

Scientific Methods

Scientific Method

- based on observation, logic, and skepticism

Hypothesis

- a collection of ideas that seems to explain a phenomenon
- Model
 - hypotheses that have withstood observational or experimental tests

Theory

 a body of related hypotheses can be pieced together into a self consistent description of nature

Laws of Physics

 theories that accurately describe the workings of physical reality, have stood the test of time and been shown to have great and general validity

Uncover the Formation of Solar System

- The star we call the Sun and all the celestial bodies that orbit the Sun
 - including Earth
 - the other eight planets
 - all their various moons
 - smaller bodies such as asteroids and comets

Discover Stars Born, Grow and Die

Learn origin and fate of the universe

- By observing the galaxies

Angular Measure

- Astronomers use angular measure to
 - describe the apparent size of a celestial object
- degree (°): the basic unit of angular measure
 - One entire cycle is 360°
- Angular diameter, or angular size
 - The Moon is $\frac{1}{2}^{\circ}$ or the Moon **subtends** an angle of $\frac{1}{2}^{\circ}$.

Angular Measure

Angular distance: If you draw lines from your eye to each of two stars, the angle between these lines is the angular distance.

Angular Measure

The adult human hand held at arm's length provides a means of estimating angles

- About 10° for the fist
- About 1° for the finger

Angular Measurements

- Subdivide one degree into 60 arcminutes
 - minutes of arc
 - abbreviated as 60 arcmin or 60'
- Subdivide one arcminute into 60 arcseconds
 - seconds of arc
 - abbreviated as 60 arcsec or 60"

 $1^\circ = 60 \operatorname{arcmin} = 60'$

1 = 60 arcsec = 60"

- For example
 - Moon: 1800 arcsec
 - Saturn: 20 arcsec
 - A star: much less than 1 arcsec, can not be resolved by any telescope

Powers-of-ten notation

Notation:Common Prefixes

Factor		Name	Symbol
(billion)	109	Giga-	G (1,000,000,000)
(million)	106	Mega-	M (1,000.000)
(thousand)	10 ³	kilo-	K (1,000)
(hundredth)	10-2	centi-	c (0.01)
(thousandth)	10-3	milli-	m (0.001)
(millionth)	10-6	micro-	μ (0.000001)
(billionth)	10-9	nano-	n (0.00000001)

Powers-of-ten notation

149,600,000 km, the average distance between the Sun and the Earth

149.6 million km

1.496 X 10⁸ km in scientific notation

Units of Astronomical Distances

Astronomical Unit (AU)

- One AU is the average distance between Earth and the Sun
- 1.496 X 10⁸ km or 92.96 million miles
- Jupiter: 5.2 AU from the Sun

Light Year (ly)

- One ly is the distance light can travel in one year at a speed of about 3 x 10⁵ km/s or 186,000 miles/s
- 9.46 X 10¹² km or 63,240 AU
- Proxima Centauri, the nearest star: 4.2 ly

Parsec (pc)

- the distance at which 1 AU subtends an angle of 1 arcsec
- $-1 \text{ pc} = 3.09 \times 10^{13} \text{ km} = 3.26 \text{ ly}$
- Milky Way galaxy: 50 kpc

Units of Astronomical Distances

Final Notes on Chap. 1

- There are 8 sections. Section 1-1 to 1-7 are covered in the lecture
- There are 4 boxes. None of them is covered in the lecture. You are encouraged to study them on your own