
CDS 301

Spring, 2013

Domain-Modeling Technique
Chap. 8

 April 9, 2013 – April 11, 2013

Jie Zhang
Copyright ©

Outline

8.1. Cutting

8.2. Selection

8.3. Grid Construction from Scattered Points

8.4. Grid-Processing Technique

Domain-Modeling

Discrete dataset

f) C, (D,D

})({ k

iiii },{Φ}, {f}, {CpsD

Continuous dataset

Visualization is to operate on the domain, e.g., the

sampling points and grids, but not on the

sampled data.

CH8.1 Cutting

April 09, 2013

Cutting

D D'





 and

})({

:Dataset Targe

})({

:Dataset Source

'''''

iiii

iiii

},{Φ}, {f}, {Cp

},{Φ}, {f}, {Cp

s

s

D

D

Target domain is a subset of the source domain

Brick Extracting

• Target domain has the same dimension of the

source domain

• Extracting a volume of interest (VOI)

} {p'} {p ii 

Slicing

• Target domain has a smaller dimension: d-1

• Fix the coordinate in the slicing dimension

Along X-axis

Sagittal slice

Along Y-axis

axial slice

Along Z-axis

coronal slice

>>load mri

>>D_tmp=squeeze(D); %remove singleton dimension

>>Ds=smooth3(D_tmp); %smooth 3-D data

>>h=slice(Ds,58,128,1); %show the slice

>>set(h,’EdgeColor’,’none’)

>>h=slice(Ds,0,0,10)

>>h=contourslice(Ds,1,1,[10,15],100);

MATLAB: slice

Implicit Function Cutting

• Generalize the axis-aligned slicing

0

planearbitrary an along cuttingE.g.,

 DCzByAx

%define a surface, rotate a surface

%define a surface

>> hsf=surf(linspace(-2,2,20),linspace(-2,2,20),zeros(20))

%rotate a surface

>>rotate(hsf,[1,0,0],30) %rotate(surf, direction, angle)

>>xd=get(hsf,’XData’)

>>yd=get(hsf,’YData’)

>>zd=get(hsf,’ZData’)

MATLAB: rotate, surf

%show a tilted slice

>>load mri

>>D_tmp=squeeze(D); %remove singleton dimension

>>Ds=smooth3(D_tmp); %smooth 3-D data

>>hsf=surf(linspace(1,128,128),linspace(1,128,128),zero

s(128,128)+10) ; %create a horizontal surface

>>rotate(hsf,[0,1,0],-45) %rotate along Y by 45 degree

>>xd=get(hsf,’XData’)

>>yd=get(hsf,’YData’)

>>zd=get(hsf,’ZData’)

>>h=slice(Ds,xd,yd,zd); %show

MATLAB: slice

CH8.2 Selection

April 09, 2013

Selection

• Cutting explicitly specifies the topology of the

target domain

• Selection explicitly specify the attribute

value of the target dataset.

})(|{' truepsDpD 

• The output of selection is an unstructured grid

• E.g., contouring operation, iso-surface

• E.g., thresholding or segmentation

See “MRI_isosurface.m”

MATLAB: patch

CH8.3 Grid Construction

from Scattered Points

April 09, 2013

Scattered Points

12,772

3-D points

represent a

human face

Gridless point cloud

Grid Construction

• Build an unstructured grid from scattered points

• Almost all visualization software packages

require data to be in a grid-based

representation (structured or unstructured).

• Triangulation methods are the most-used class

of methods for constructing grids from scattered

points

}C {p} {p iii ,

Delaunay Triangulation

 • Constructed

triangles covers

the convex hull of

the point set

• No point lies inside

the circumscribed

circle of any

constructed

triangles

Most popular: 2-D  triangle

 3-D  Tetrahedran

Delaunay Triangulation

600 random

2-D points

Delaunay Triangulation

Angle-

constrained

Delaunay

Triangulation.

20° < α <

140°

Added 361

extra points

Delaunay Triangulation

Area-

constrained

Delaunay

Triangulation.

a < amax

Added 1272

extra points

CH8.3 Grid Construction

from Scattered Points

(Continued)

April 11, 2013

Review: Delaunay Triangulation

600 random

2-D points

Surface Reconstruction

• Render a 3-D surface from a point cloud

Radial Basis Function method

1. Computing a 3D volumetric dataset, using the 3D RBF

(radial basic function) for construction.

2. Find the isosurface (f=1) using marching cube algorithm




















Rr

Rre

xxTxf

kr

i

 ,0

 ,

)),(()(
~

2

31
R

Φ: reference RBF

R: support radius

K: decay speed coefficient

T-1: word-to-reference coordinate transform

Signed Distance method

1. Computing a tangent plane Ti that approximates the local

surface in the neighborhood of pi

2. Calculate the distance function f between a given point

(x) and the tangent plane at the sample point closest to

(x)

3. The surface is simply the isosurface as f=0

Find Local Tangent Plane

i

i

i

Np

i

ii

i

R

N

N

p

c

nc

T

i

 radius support within

 points neibouring ofset the

||

 normal and center)(geometric its

by defined is planeTangent










Find Local Tangent Plane

ii

k

i

kj

i

j

Np

ncxxf

cpcp
i


).()(

function Distance The

matrix theof eigenvaluesmallest the to

 ingcorrespondr eigenvecto theis n normal The

))((

a a a

a a a

a a a

)(aA

Matrix Covariane :normal thefind To

i

333231

232221

131211

jk


























Local Triangulation Method

• Constructing the unstructured triangle mesh from

local 2D Delaunay triangulation

1. Computing a tangent plane Ti that approximates the

local surface in the neighborhood of pi

2. Project its neighbor set Ni on Ti, and compute 2D

Delaunay triangulation

3. Add to the mesh those triangles that have pi as a

vertex

Local Triangulation Method

CH8.4 Grid-Processing

Techniques

April 11, 2013

Grid-Processing Techniques

• Grid-processing techniques change

1. The grid geometry: location of grid sample

points

2. The grid topology: the grid cells

Geometric Transformation

(in General)

• change the position of the sample points; not

modify the cells, attributes, and basis functions

• Affine operation: carry straight lines into straight

lines and parallel lines into parallel lines.

• Translation; rotation; scaling

• Nonaffine operation:

• Bending, twisting, and tapering

• Based on attributes

• Warping, height plot, and displacement plot

• Based on grid

• Grid-smoothing technique

Grid Simplification

• Reducing the number of sampling points (but

need to maintain the reconstruction quality)

• Uniform sampling yields too many grid points

• Adaptive sampling

• fewer points in area of low surface curvature

• More points in area of high surface curvature

Triangle Mesh Decimation

• Recursively reduce the vertex and its triangle fan

if the resulting surface lies within a user-specified

distance from the un-simplified surface

36000 grid points 3600 grid points

Vertex Clustering

• By clustering or collapsing vertices

• Assign each vertex an important value, based on

the curvature (high curvature  more important)

• Overlaid a grid onto the mesh

• All vertices within the grid cell are collapsed to the

most important vertex within the cell

Grid Refinement

• An opposite operation of grid simplification

• Generate more sample points

• A refined grid gives better results when applying

grid manipulation operation

• Inserting more points when the surface varies

more rapidly

Grid Smoothing

• Question: how to reduce geometric noise?

• Modify the positions of the grid points such that

the reconstructed surface becomes smoother

• Smoothing removes the high frequency, small

scale variation, e.g, small spikes

Laplacian Smoothing

Before smoothing After smoothing

Laplacian Smoothing





N

j

n

jq
N 1

)(
1

b

Laplacian process shifts grid points toward the

barycenter of its neighboring point set

Laplacian Smoothing



























N

j

n

i

n

j

n

i

n

i pqkpp

z

u

y

u

x

u
uu

uk
t

u

1

1

2

2

2

2

2

2

)(

yiterativeldiffusion solving grid, discreteFor

)(

operator Laplacian :Δ

:EquationDiffusion

%the raw data

clear;clf

load seamount %Matlab dataset of a seamount

figure(1)

plot3(x,y,z,'.','markersize',12)

xlabel('Longitude'), ylabel('Latitude'),zlabel('Depth')

grid on

MATLAB: Triangulation

%2-D Triangulation

figure(2)

plot(x,y,'.','markersize',12)

xlabel('Longitude'), ylabel('Latitude')

tri=delaunay(x,y); %create a 2-D triangulation

hold on

triplot(tri,x,y); %plot the triangulation

MATLAB: Triangulation (cont.)

%3-D triangulation

figure(3)

trimesh(tri,x,y,z)

%3-D triangular surface in wireframe mode

MATLAB: Triangulation (cont.)

%3-D triangulation in shaded mode

figure(4)

hsf=trisurf(tri,x,y,z)

%3-D triangular surface in shaded mode

set(hsf,'EdgeColor','none')

MATLAB: Triangulation (cont.)

%add visual effects

light

lighting gouraud

%lighting flat

%shading flat

shading interp

axis off

hold on

plot(x,y,'.','markersize',12)

MATLAB: Triangulation (cont.)

End

of Chap. 8

