
AN INTRODUCTION TO MATLAB 

Adopted from the Presentation by 

 

Joseph Marr, Hyun Soo Choi, and Samantha Fleming 

George Mason University 

School of Physics, Astronomy and Computational Sciences 

NOTE:  Subject to frequent revisions! 
Last Revision: 

September 13, 2011 

 

Fall 2011, version 1 

Jie Zhang 



What’s the red star all about? 

A NOTE BEFORE WE BEGIN… 

That is the marker that will measure our progress through this 

Matlab presentation.  Each time we discuss this presentation’s 

contents, I will move the red marker further along, and it will 

come to rest in the lower right hand corner of the last slide we 

discussed prior to leaving class for the day.  In this way, you can 

keep track of how far we’ve gone, and thus, the Matlab material 

you’re responsible for.  Once the marker passes slides, those 

slides won’t be modified (except to correct errors).  Slides not yet 

passed by the red marker may, however, be modified for 

upcoming lectures.  The latest Matlab presentation will always be 

posted in the class website. 



Table of Contents 
 

CHAPTER 1:  Prologue 

CHAPTER 2:  The MATLAB environment 

CHAPTER 3:  Assignment, Variables, and Intrinsic Functions 

CHAPTER 4:  Vectors and Vector Operations 

CHAPTER 5:  Matrices (Arrays) and Matrix Operations 

CHAPTER 6:  Iteration I:  FOR Loops 

CHAPTER 7:  Writing a Matlab Program 

CHAPTER 8:  Basic Graphs and Plots  

CHAPTER 9:  Iteration II:  Double Nested FOR Loops (DNFL) 

CHAPTER 10:  Conditionals:  IF Statements 

CHAPTER 11:  Random Numbers 

CHAPTER 12:  Iteration III:  WHILE Loops 



CHAPTER 1 

 

PROLOGUE 



FIRST…WHERE IS MATLAB W/R/T 

PROGRAMMING LANGUAGES? 

• Matlab (―scripting language‖) 

• Common Lisp, Python 

• Java 

• Fortran, C, C++ 

• Assembly language 

• Machine code (binary!) 

 

           micro code 
Increasing 

ease-of-use 

(fairly subjective) 

Increasing 

program size 

(fairly objective) 



WHY MATLAB? 

 ―Softer‖ Reasons . . .   

• Most scientists and engineers know it 

• Widely used in industry, academia and gov 

• Easy to learn (it’s a ―scripting‖ language) 

• LOTS of pre-developed application packages 

• Very good technical support/user community 

 

 ―Harder‖ Reasons . . .  

• Excellent graphics capabilities 

• Includes many modern numerical methods 

• Optimized for scientific modeling 

• Usually, FAST matrix operations 

• Interfaces well with other languages 



• ASSIGNMENT:  single variables 

 

• ASSIGNMENT:  vectors and matrices (arrays) 

 

• ITERATION (FOR loops, WHILE loops, and  

      the all-important double   

      nested FOR loops – DNFL) 

 

• SELECTION (IF statements, single and  

        multi-way) 

WHAT WE PLAN TO STUDY: 

The Building Blocks of Programs 

Sequence 

Repetition 

Selection 



WHAT THE EXPERTS HAVE SAID: 

―The only way to learn a new 

programming language is by 

writing programs in it.‖ 

 

Brian Kernighan & Dennis Richie 

―The C Programming Language‖ 

 

 

[NOTE:  red emphasis added] 



CHAPTER 2 

 

THE MATLAB ENVIRONMENT 



THE MATLAB DESKTOP 



THE MATLAB DESKTOP 

COMMAND LINE AREA 



THE MATLAB DESKTOP 

EDITOR AREA 



THE MATLAB DESKTOP 

FILES IN  

CURRENT DIR 



THE MATLAB DESKTOP 

CURRENT 

VARIABLES 



THE MATLAB DESKTOP 

COMMAND 

HISTORY 



CHAPTER 3 

 

ASSIGNMENT and 

INTRINSIC FUNCTIONS 



ASSIGNMENT:  VARIABLES 

• Think of a labeled box.  We can put ―stuff‖ inside 

that box.  ―Stuff‖ here means values. 

 

• Box labels have names written on them. 

 

• Those names enable us to refer to specific boxes, 

at a later time, as needed – to go straight to them. 

 

• These labeled boxes are what we call variables. 

A variable is a labeled memory box. 

 

• Putting ―stuff‖ inside that box is called assigning a 

value to a variable, or simply, assignment. 



ASSIGNMENT:  VARIABLES 

• ―MATLAB variable names must begin with a letter, 

which may be followed by any combination of 

letters, digits, and underscores. MATLAB 

distinguishes between uppercase and lowercase 
characters, so   A  and   a   are not the same 

variable.‖  

    (http://www.mathworks.com/help/techdoc/matlab_prog/f0-38052.html) 

 

• Valid variable names: 
A,   a,   Aa,  abc123,  a_b_c_123 

 

• Invalid variable names: 
1A, _abc, ?variable, abc123?   

  

http://www.mathworks.com/help/techdoc/matlab_prog/f0-38052.html
http://www.mathworks.com/help/techdoc/matlab_prog/f0-38052.html
http://www.mathworks.com/help/techdoc/matlab_prog/f0-38052.html
http://www.mathworks.com/help/techdoc/matlab_prog/f0-38052.html


• To do assignment in Matlab: 

1.  Write a variable name 

2.  Write the  ―=‖  symbol 

3.  Write the value that you want to store in the 

variable 

 

• Examples: 

 
A = 5    (an integer value) 

a123 = 1.0   (a floating point value) 

abc_123 = 1.0e-02  (an exponential value) 

myVariable = „Joe‟ (a string value) 

ASSIGNMENT:  VARIABLES 



Rules of Assignment: 

 

• The ―=‖ symbol DOES NOT MEAN EQUALS!  It 

means assignment:  Assign the value on the 

right of the ―=‖ symbol to the variable on the left 

of the ―=‖ symbol. 

• To access what’s ―in the box‖—that is, the value 

currently held by the variable—simply type the 

name of the variable alone on a line, or, on the 

right side of a ―=― symbol. So a variable name 

written on the right side of a ―=― symbol means: 

―retrieve the value stored in this variable‖. 

ASSIGNMENT:  VARIABLES 



REMEMBER: 

 

• Value on the right of ―=‖ gets stored into 

variable on the left of ―=‖: 

 
 

   var1 = 5.0 
 

• Example:  Valid assignment (creates var2, 

assigns it the value contained in var1): 
  

   var2 = var1 
 

• Example:  Invalid assignment (generates error:  

var3 not previously declared – holds no value) 
 

   var2 = var3 

ASSIGNMENT:  VARIABLES 



• Rules of Assignment (cont): 

• Variables can be used in assignment statements to 

assign values to other variables: Since placing a 

variable on the right side of ―=― retrieves its current 

value, we can subsequently assign that value to yet 

another variable: 
                   

                     var1 = 3.0      (assigns the value 3.0 to var1) 

                            var2 = var1    (retrieves 3.0 from var1 and stores  

                 that value into var2) 

 

• We can do math with variables, too: 
 

 Examples:  var3 = var2 + var1   (here, 3.0 + 3.0) 
             var4 = var3  var2  (here, 6.0 * 3.0) 

             var5 = var4 / var1   (here, 18.0 / 3.0) 

             var6 = var2 ^ var1   (here, 3.0 ^ 3.0) 

ASSIGNMENT:  VARIABLES 



• Rules of Assignment (cont): 

 

• We can also ―update‖ a variable by constantly 

reassigning new values to it.  Updating a variable 

by adding 1 to it, and then assigning the new 

value back into the same variable is called 

―incrementing‖.  Example: 
 

  var7 = 1 

  var7 = var7 + 1 

 

Incrementing a variable is a VERY IMPORTANT 

thing to do, because, doing so enables us to 

count effectively. 

ASSIGNMENT:  VARIABLES 



• Rules of Arithmetic Operator Precedence: 

• The preceding arithmetic examples raise a question:  

In what order are the arithmetic operations performed in 

an assignment statement? 

• Like in algebra:  Anything in parentheses first, followed 

by exponentiation, followed by multiplication/division, 

followed by addition/subtraction 
 

Examples: 
 

var3 = var2 + var1 * var4   var3 = (var2 + var1) * var4  

 

 

 

 

ASSIGNMENT:  VARIABLES 



• Rules of Arithmetic Operator Precedence : 
 

Examples: 
 

   var3 = var2 + var1 * var4 

 

 

 

 

 

   var3 = (var2 + var1) * var4  

 

 

 

 

 

   var3 = var2 / var1 * var4 

 

     ???  

ASSIGNMENT:  VARIABLES 

But what if the 

operators are of 

equal precedence? 

First . . .  

Second  

First . . .  

Second  



• Rules of Arithmetic Operator Precedence : 
 

Examples: 
 

   var3 = var2 + var1 * var4 

 

 

 

 

 

   var3 = (var2 + var1) * var4  

 

 

 

 

 

   var3 = var2 / var1 * var4 

  

ASSIGNMENT:  VARIABLES 

When operators are of 

equal precedence, 

associate LEFT TO RIGHT: 

First . . .  

Second  

First . . .  

Second  

First . . .  

Second  



• Rules of Arithmetic Operator Precedence : 

 

Examples: var3 = var2 / var1 / var4 / var5 / var6 

 

     ??? 

 

 

 

  var3 = var2 * var1 - var4 / var5 + var6 

 

     ??? 

 

 

 

  var3 = var2 / var1 * var4 / var5 ^ var6 

 

     ???  

ASSIGNMENT:  VARIABLES 



• Rules of Arithmetic Operator Precedence : 

 

Examples: var3 = var2 / var1 / var4 / var5 / var6 

 

      

 

 

 

  var3 = var2 * var1 - var4 / var5 + var6 

 

      

 

 

 

  var3 = var2 / var1 * var4 / var5 ^ var6 

ASSIGNMENT:  VARIABLES 



APPEARANCE OF OUTPUT 

• We can change the way numbers are printed to the 

screen by using Matlab’s ―format‖ command, 

followed by the appropriate directive, ―short‖ or 

―long‖ (the format directive is persistent!) 

 
 >> pi  

 >> ans = 3.1416 
 

 >> format short 

 >> pi 

 >> ans = 3.1416 
 

 >> format long 

 >> pi 

 >> ans = 3.141592653589793 
 

 >> sqrt(2) 

 >> ans = 1.414213562373095 



SOME BUILT-IN FUNCTIONS 

: 
 

 >> pi  

 >> ans = 3.1416 

sine(x): 
 

 >> sin(pi) 

 >> ans = 1.2246e-016 

 

cosine(x): 
 

 >> cos(pi) 

 >> ans = -1 

natural  log (N): 
 

 >> log(2) 

 >> ans = 0.6931 

 

tangent(x): 
 

 >> tan(pi) 

 >> ans = 1.2246e-016 

 

base 10 log (N): 
 

 >> log10(2) 

 >> ans = 0.3010 

Here are a few of Matlab’s built-in (intrinsic) 
functions, to get you started: 



SOME BUILT-IN FUNCTIONS 

: 
 

 >> x = pi  

 >> x = 3.1416 

sine(x): 
 

 >> x = sin(pi) 

 >> x = 1.2246e-016 

 

cosine(x): 
 

 >> x = cos(pi) 

 >> x = -1 

natural  log (N): 
 

 >> x = log(2) 

 >> x = 0.6931 

 

tangent(x): 
 

 >> x = tan(pi) 

 >> x = 1.2246e-016 

 

base 10 log (N): 
 

 >> x = log10(2) 

 >> x = 0.3010 

We can use Matlab’s built-in functions on the right 

hand side of an assignment statement, to produce a 
value that we then assign to a variable: 



INTERLUDE:  FOCUS ON ―MOD‖ 

The ―mod‖ function is very important.  It comes up 

again and again, and is quite useful. 

 

It is simply this:  The INTEGER remainder after 

long division. 

 

Remember long division, and the remainder? 



INTERLUDE:  FOCUS ON ―MOD‖ 

“Ten divided by three is three remainder one” 

 

or 

 

  mod(10,3) = 1 

 

“Twelve divided by seven is one remainder five” 

 

or,  

 

  mod(12,7) = 5 



INTERLUDE:  FOCUS ON ―MOD‖ 

(cont) 

“Eight divided by two is three remainder zero” 

 

or 

 

  mod(8,2) = 0 

 

“Twenty nine divided by three is nine remainder two” 

 

or,  

 

  mod(29,3) = 2 



INTERLUDE:  FOCUS ON ―MOD‖ 

(cont) 

“Three divided by five is zero remainder three” 

 

or 

 

  mod(3,5) = 3 

 

“Eight divided by eleven is zero remainder eight” 

 

or,  

 

  mod(8,11) = 8 



INTERLUDE:  FOCUS ON ―MOD‖ 

YOUR TURN! 

mod(8,3)  =  ??? (in words, then the value) 

 

mod(4,5)  =  ??? (in words, then the value) 

 

mod(4,2)  =  ??? (in words, then the value) 

 

mod(10,7)  =  ??? (in words, then the value) 

 

mod(10,5)  =  ??? (in words, then the value) 

 

mod(10,2)  =  ??? (in words, then the value) 



mod(8,3) :  ―Eight divided by three is two remainder two‖ 

 

mod(4,5) :  ―Four divided by five is zero remainder four‖ 

 

mod(4,2) :  ―Four divided by two is two remainder zero‖ 

 

mod(10,7) :  ―Ten divided by seven is one remainder three‖ 

 

mod(10,5) :  ―Ten divided by five is two remainder zero‖ 

 

mod(10,2) :  ―Ten divided by two is five remainder zero‖ 

INTERLUDE:  FOCUS ON ―MOD‖ 

YOUR TURN! (ANSWERS) 



mod(8,3)  =  2 

 

mod(4,5)  =  4 

 

mod(4,2)  =  0 

 

mod(10,7)  =  3 

 

mod(10,5)  =  0 

 

mod(10,2)  =  0 

INTERLUDE:  FOCUS ON ―MOD‖ 

YOUR TURN! (ANSWERS) 



ASSIGNMENT:  YOUR TURN! 

Example 1:  Create a variable called x and assign it 

the value 3.  Create another variable called y and 

assign it the value 4. Compute the product of x and 

y, and assign the result to a third variable called z. 

 

Example 2:  Now square z, and assign the result to 

a fourth variable called a.  Take the base 10 

logarithm of z and assign that to a fifth variable 

called b.  Reassign the value of b to x. Cube b, and 

assign the result to a sixth variable called c. 

 

Example 3:  Print out the final values of x, y, z, a, b 

and c. 



ASSIGNMENT:  YOUR TURN! (ANSWERS) 

Example 1:  Create a variable called x and assign it 

the value 3.  Create another variable called y and 

assign it the value 4.  Compute the product of x and 

y, and assign the result to a third variable called z. 

 

x = 3; 

y = 4; 

z = x * y; 

NOTE:  A semi-colon at 

the end of a Matlab 

statement suppresses 

output, i.e., tells Matlab 

to ―be quiet!‖ 



ASSIGNMENT:  YOUR TURN! (ANSWERS) 

Example 2:  Now square z, and assign the result to 

a fourth variable called a.  Take the base 10 

logarithm of z and assign that to a fifth variable 

called b.  Reassign x the value of b.  Cube b, and 

assign the result to a sixth variable called c. 

 

a = z^2; 

b = log10(z); 

x = b; 

c = b^3; 



ASSIGNMENT:  YOUR TURN! (ANSWERS) 

Example 3:  Print out the final values of x, y, z, a, b 

and c. 

 

x  

y 

z 

a 

b 

c 

NOTE:  Since a semi-

colon at the end of a 

Matlab statement 

suppresses output, to 

get printed output, 

simply don’t put a semi-

colon at the end. 



CHAPTER 4 

 

VECTORS 

and 

VECTOR OPERATIONS  



VECTORS 

• Think of a ―VECTOR‖ as a bunch of values, all 

lined up (here we have a ―row vector‖): 

 

 

 

 

• We create row vector A like this (all three ways of 

writing the assignment statement are equivalent): 

 

A = [1 2 3 4 5]; 

A = [1, 2, 3, 4, 5]; 

A = [1:5]; 

Vector A:  1 2 3 4 5 

NOT:    A = [1-5]; 



• Vectors are convenient, because by assigning a 

vector to a variable, we can manipulate the ENTIRE 

collection of numbers in the vector, just by referring 

to the variable name. 

 

• So, if we wanted to add the value 3 to each of the 

values inside the vector A, we would do this: 

 

  A + 3 

 

Which accomplishes this: 

A + 3:  1+3 2+3 3+3 4+3 5+3 

4 5 6 7 8 

VECTORS 



• We can refer to EACH POSITION of a vector, using 

what’s called ―subscript notation‖: 

Vector A:  1 2 3 4 5 

Position 1 of A, 

written A(1) 

Position 2 of A, 

written A(2) 

Position 3 of A, 

written A(3) 

Position 4 of A, 

written A(4) 

Position 5 of A, 

written A(5) 

VECTORS 



• KEY POINT:  Each POSITION of a vector can act 

like an independent variable.  So, for example, we 

can reassign different values to individual positions. 

 

 Before the first assignment: 

Vector A:  1 2 3 4 5 

After the first assignment: 

A(2) = 7; 

Vector A:  1 7 3 4 5 

VECTORS 



• KEY POINT:  Each POSITION of a vector can act 

like an independent variable.  So, for example, we 

can reassign different values to individual positions. 

 

 Before the second assignment: 

Vector A:  1 7 3 4 5 

After the second assignment: 

A(5) = 8; 

Vector A:  1 7 3 4 8 

VECTORS 



• ANOTHER KEY POINT:  Because each position in 

a vector can act like an independent variable, we 

can do all the things with vector positions that we 

can do with independent variables like we did 

previously with x, y, z, a, b and c. 

Vector A:  1 7 3 4 8 

So, given vector A above, if we type ―A(3)‖ at 

Matlab’s command line, we will get the value 3 

returned: 
  EDU>> A(3) 

  ans = 

          3 

VECTORS 



VECTORS:  YOUR TURN! 

Instructions: 

 

For the next several examples, please try to 

work out the answers without running the code 

in Matlab.  This is essential, as it will enable 

you to develop your ―Matlab intuition‖ and also 

to visualize the sequence of a computation 

(thus developing your ability to think 

algorithmically).  Furthermore, you will not be 

allowed to use Matlab software on exams or 

quizzes and so it’s better to get the practice 

now rather than wait until later!  You may, 

however, use scratch paper to work out 

answers. 



• Example 4:  If ―A(2)‖ typed at Matlab’s command 

line, what value is printed? 

 

• Example 5:  If ―A(2) + A(3)‖ is entered at Matlab’s 

command line, what value is printed? 

 

• Example 6:  If ―A(4) * A(5)‖ is entered at Matlab’s 

command line, what value is printed? 

 

• Example 7:  If ―A * 5‖ is entered at Matlab’s 

command line, what is printed?  Why? 

Vector A:  1 7 3 4 8 

VECTORS:  YOUR TURN! 



VECTORS:  YOUR TURN! 

ANSWERS 

• Example 4:  If ―A(2)‖ typed at Matlab’s command 

line, what value is printed?   7 

 

• Example 5:  If ―A(2) + A(3)‖ is entered at Matlab’s 

command line, what value is printed?   10 

 

• Example 6:  If ―A(4) * A(5)‖ is entered at Matlab’s 

command line, what value is printed?   32 

Vector A:  1 7 3 4 8 



• Example 7:  If ―A * 5‖ is entered at Matlab’s 

command line, what is printed?  Why? 

 
EDU>> A*5 

 

ans = 

 

     5    35    15    20    40 

 

Each position of A is multiplied by 5. 

Vector A:  1 7 3 4 8 

VECTORS:  YOUR TURN! 

ANSWERS 



• Example 8:  If ―A(2) = A(3) * A(4)‖ typed at Matlab’s 

command line, what does vector A look like now? 

 

• Example 9:  Assume vector A, as shown above, 

and also assume that the following sequence is 

entered at Matlab’s command line.  What does the 

vector A look like after this sequence? 

 

  A(1) = A(2) – ( A(3) + A(4) ); 

  A = A * A(1); 

Vector A:  1 7 3 4 8 

VECTORS:  YOUR TURN! 



• Example 8:  If ―A(2) = A(3) * A(4)‖ typed at Matlab’s 

command line, what does vector A look like now? 

 

 
EDU>> A(2) = A(3) * A(4) 

 

A = 

 

     1    12     3     4     8 

Vector A:  1 7 3 4 8 

VECTORS:  YOUR TURN! 

ANSWERS 



• Example 9:  Assume vector A, as shown above, 

and also assume that the following sequence is 

entered at Matlab’s command line.  What does the 

vector A look like after this sequence? 

 

  A(1) = A(2) – ( A(3) + A(4) ); 

  A = A * A(1) 

 
A = 

 

     0     0     0     0     0 

Vector A:  1 7 3 4 8 

VECTORS:  YOUR TURN! 

ANSWERS 



Assume we have a vector, A, as follows: 

Vector A:  1 7 3 4 8 

VECTOR OPERATIONS 

We can add a single number (a scalar) to every 

element of A, all at once, as follows: 

 

B  =  A + 5  =  

 

We can also multiply every element of A by a single 

number (a scalar) as follows: 

 

B  =  A * 5  =  

6 12 8 9 13 

5 35 15 20 40 



Vector A:  1 7 3 4 8 

VECTOR OPERATIONS 

We can subtract single number (a scalar) from every 

element of A, all at once, as follows: 

 

B  =  A - 5  =   

 

We can also divide every element of A by a single 

number (a scalar) as follows: 

 

B  =  A / 5  =   

-4 2 -2 -1 3 

0.2 1.4 0.6 0.8 1.6 



Vector A:  1 7 3 4 8 

VECTOR OPERATIONS 

BUT: 

 

If we want to exponentiate every element of A by a 

number (i.e., raise each element of A to a particular 

power), then we have to write this in a special way, 

using the DOT operator: 

 

 

B  =  A .^2  =   

 

1 49 9 16 64 

NOT:     B  =  A^2  



We can also do mathematical operations on two 

vectors OF THE SAME LENGTH‡.  For example, 

assume we have two vectors, A and B, as follows: 

Vector A:  1 7 3 4 8 

VECTOR OPERATIONS 

Vector B:  -1 7 10 6 3 

Then: 

 

C  =  A – B  = 

 

C =   A + B  =    

2 0 -7 -2 5 

0 14 13 10 11 

‡:  If A and B are not the same length, Matlab will signal an error 



Vector A:  1 7 3 4 8 

VECTOR OPERATIONS 

Vector B:  -1 7 10 6 3 

Multiplication, division, and exponentiation,  

BETWEEN TWO VECTORS, ELEMENT-BY-

ELEMENT, is expressed in the DOT notation: 

 

C  =  A .* B  = 

 

C =   A ./ B  = 

 

C =   A .^ B  = 

-1 49 30 24 24 

-1 1 0.3 0.666 2.666 

1-1 77 310 46 83 



(Stopped Here on Sep. 8, 2011) 



(Begin Here on Sep. 22, 2011) 



Matlab Tutorial Video 
1. Online demo video - Getting Started with Matlab (05:10)  

•http://www.mathworks.com/videos/matlab/getting-

started-with-matlab.html 

 

2. Online demo video - Writing a Matlab Program (05:43)  

•http://www.mathworks.com/videos/matlab/writing-a-

matlab-program.html 

 

 

Links are also available at class website resource page: 

http://solar.gmu.edu/teaching/2011_CDS130/Resources.html 

 



Vector A:  1 7 3 4 8 

A(5) = 8 

Short Review of VECTOR 

>> A=[1,7,3,4,10]  ; %comment: assign values of a vector  

Variable 

name ―A‖ 

A vector of 

five elements 

Index number 

indicating position of 

an array element 

An element Element 

value 



Vector A:  1 7 3 4 8 

OTHER USEFUL VECTOR OPERATIONS 

 

Square root of each element of A: 
 

 >> sqrt(A) 

ans = 

    1.0000    2.6458    1.7321    2.0000    2.8284 



Vector A:  1 7 3 4 8 

OTHER USEFUL VECTOR OPERATIONS 

Natural logarithm of each element of A: 
 

 >> log(A) 

 ans = 

         0    1.9459    1.0986    1.3863    2.0794 

 

Base ten logarithm of each element of A: 
 

 >> log10(A) 

ans = 

         0    0.8451    0.4771    0.6021    0.9031 



Vector A:  1 7 3 4 8 

OTHER USEFUL VECTOR OPERATIONS 

Cosine of each element of A (elements interpreted as radians): 
 

 >> cos(A) 

ans = 

    0.5403    0.7539   -0.9900   -0.6536   -0.1455 

 

Sine of each element of A (elements interpreted as radians): 
 

 >> sin(A) 

ans = 

    0.8415    0.6570    0.1411   -0.7568    0.9894 



Vector A:  1 7 3 4 8 

OTHER USEFUL VECTOR OPERATIONS 

Mean (average) of ALL elements of A: 
 

 >> mean(A) 

ans = 

    4.6000 

 

Standard deviation of ALL elements of A: 
 

 >> std(A) 

ans = 

    2.8810 



VECTORS:  VARIABLE INDEXING 

Let’s say that I wanted to create a vector A containing 

all the odd integers between 1 and 10 (inclusive).  

How would I do this? 

 

Here’s one way: 

 

A = [1, 3, 5, 7, 9]; 

 

I can simply list them all out.  BUT, we could do this 

another way . . .  



I could do it this way: 

 

A = [1:2:10] 

 

This says, ―Begin at 1, then to generate all the 

remaining values in the vector, keep adding 2 to the 

previous value.  Stop when we reach 10.  Don’t add 

the value if it exceeds 10.‖  So . . .   

Begin at 1: 

 

A = [1] 

VECTORS:  VARIABLE INDEXING 



Add 2 to the previous value (i.e., to 1) to generate the 

next value: 

 

A = [1, 1+2] 

 

Add 2 to the previous value (i.e., to 3) to generate the 

next value: 

 

A = [1, 3, 3+2] 

 

Add 2 to the previous value (i.e., to 5) to generate the 

next value: 

 

A = [1, 3, 5, 5+2] 

VECTORS:  VARIABLE INDEXING 



Add 2 to the previous value (i.e., to 7) to generate the 

next value: 

 

A = [1, 3, 5, 7, 7+2] 

 

Then . . . add 2 to the previous value (i.e., to 9) to 

generate the next value?? 

 

A = [1, 3, 5, 7, 9, 9+2] 

 

WAIT!  9+2 = 11 and 11 > 10, which is the end of the 

vector.  So since we must stop at 10, we DO NOT 

insert 11 into the vector A.  Thus, the vector A is now 

constructed as desired: 

    A = [1, 3, 5, 7, 9] 

VECTORS:  VARIABLE INDEXING 



NOTE WHAT WE NOW HAVE: 

Vector A:  1 3 5 7 9 

Position 1 of A, 

written A(1) 

Position 2 of A, 

written A(2) 

Position 3 of A, 

written A(3) 

Position 4 of A, 

written A(4) 

Position 5 of A, 

written A(5) 

VECTORS:  VARIABLE INDEXING 



THUS: 

Vector A:  1 3 5 7 9 

A(1)=1 A(2)=3 A(3)=5 A(4)=7 A(5)=9 

VECTORS:  VARIABLE INDEXING 



WHAT’S THE ADVANTAGE of doing it this way?  

Why not list out all the members of the vector?  Isn’t 

it easier that way? 

 

Actually, no.  What if I wanted to create a vector B 

containing all the odd, positive integers between, 

say, 1 and 1000 (inclusive).  How would I do that?  I 

could list them out, one by one, but that’s pretty 

tedious (not to mention time consuming).  Here’s 

how to do it all in one statement: 

 

B = [1:2:1000]; 

 

That’s it! 

VECTORS:  VARIABLE INDEXING 

Remember to end with a 

semi-colon, or else you’re 

going to see a LOT of 

output! 



How about creating a vector C containing all the 

even, positive integers between 1 and 1000 

(inclusive).  How would I do that? 

 

Begin at 2 and then add 2: 

 

C = [2:2:1000]; 

 

We can start anywhere we want.  We start at 2 

because of course, 1 is odd and will not be a 

member of the vector!  The vector will begin with the 

value 2. 

VECTORS:  VARIABLE INDEXING 



Let’s say that I want to find the average of all the 

even, positive integers between 1 and 1000.  How 

would I do that? 

 

Here’s how: 

 

C = [2:2:1000]; 

mean(C) 

 

That’s it! 

VECTORS:  VARIABLE INDEXING 



CHAPTER 5 

 

MATRICES (ARRAYS) 

and 

MATRIX OPERATIONS 



MATRICES (ARRAYS) 

• Think of a MATRIX as a partitioned box:  The box 

itself has a label (its variable name), and, we can 

store MULTIPLE things inside the box, each inside 

its own partition: 

 

 

 

 

 

 

 

• We can manipulate the ENTIRE COLLECTION at 

once, just by referring to the matrix’s variable name. 

Matrix A:  



• A matrix has DIMENSIONS:  In the 2 dimensional case, 

rows and columns. 

• Each partition is referred to by both its row number and its 

column number. 

•Rule: 

• In Matlab, both row and column numbers START AT 1: 

(1,1) (1,2) (1,3) 

(2,1) (2,2) (2,3) 

(3,1) (3,2) (3,3) 

(ROW, COLUMN) 

Matrix A:  

MATRICES (ARRAYS) 

Row 1 

Row 2 

Row 3 

Column 

1 

Column 

2 

Column 

3 



• We can access individual partitions (called 

―elements‖) by writing the matrix name, 

followed by a left paren ―(―, the row number, 

a comma, the column number, and a right 

paren ―)‖: 

Matrix A:  

A(1,2) 

A(1,1) 

A(2,3) 

A(3,2) 

MATRICES (ARRAYS) 



A(1,1) A(1,2) A(1,3) 

A(2,1) A(2,2) A(2,3) 

A(3,1) A(3,2) A(3,3) 

(ROW, COLUMN) 

• Rule: 

The name for an individual matrix 

element acts just like a variable. 

 

Matrix A: 

4 2 0 

13 7 12 

1 3 -10 

(ACTUAL VALUES) 

Typing “A(1,1)” at the command line, will result in 4 

Typing “A(2,2)” at the command line, will result in 7 

Typing “A(3,3)” at the command line, will result in -10 

A(1,3) 

MATRICES (ARRAYS) 



• Rules: 

• Each matrix element acts like a variable 

and so can be used like variables 

 

(ACTUAL VALUES) 

Examples: varX  =  A(1,1) + A(1,2)  (so, varX = 4 + 2) 

  varX  =  A(2,2)  A(1,2)  (so, varX = 7  2) 

  varX  =  A(3,1) - A(2,3)   (so, varX = 1 – 12) 

  varX  =  A(1,2) ^ A(3,2)   (so, varX = 2^3 ) 

4 2 0 

13 7 12 

1 3 -10 

A(1,1) A(1,2) A(1,3) 

A(2,1) A(2,2) A(2,3) 

A(3,1) A(3,2) A(3,3) 

(ROW, COLUMN) 

Matrix A: 

MATRICES (ARRAYS) 



A(1,1) A(1,2) A(1,3) 

A(2,1) A(2,2) A(2,3) 

A(3,1) A(3,2) A(3,3) 

(ROW, COLUMN) 

• As a result, you can assign values to 

specific matrix elements, too: 

 

Matrix A: 

(NEW VALUES) 

Examples: A(1,1) =  100; 

  A(2,2) =  200; 

  A(3,3) =  300; 

100 2 0 

13 200 12 

1 3 300 

MATRICES (ARRAYS) 



(Stopped Here on Sep. 22, 2011) 



(Begin Here on Sep. 27, 2011) 



Review: Array and Matrix 

Questions:  

 

(1) For array A=[3,4,5,7,10], what is A(4)? 

 

(2) For the following matrix A 

 

                     2   8   10 

                     9   1     3 

                     6   20   5 

                     14   7   6 

 

(a) How many rows and columns in this matrix? 

(b) What is A (2,3)?  

(c) What is A (3,2)? 



• Matrices can be different dimensions.  

Here’s a 1-D matrix (called a ―row vector‖): 

 
(ROW, COLUMN) 

Matrix B: B(1,1) B(1,2) B(1,3) B(1,4) B(1,5) 

(ACTUAL VALUES) 

10 8 6 4 2 

B(1,1) = 10; 

B(1,2) = 8; 

B(1,3) = 6; 

B(1,4) = 4; 

B(1,5) = 2; 

Matrix B: 

MATRICES (ARRAYS) 



(ROW, COLUMN) 

• Another 1-dimensional matrix (called a 

―column vector‖): 

 

Matrix C: 

(ACTUAL VALUES) 

C(1,1) = 10; 

C(2,1) = 8; 

C(3,1) = 6; 

C(4,1) = 4; 

C(5,1) = 2; 

C(1,1) 

C(2,1) 

C(3,1) 

C(4,1) 

C(5,1) 

10 

8 

6 

4 

2 

MATRICES (ARRAYS) 



• Creating matrices in Matlab (cont): 

• Method #1:  Write it out explicitly 

(separate rows with a semi-colon): 

 
 

 >> D = [1; 2; 3] 

 

 D = 

  1 

  2 

  3 

 

 >> D = [1, 2, 3; 4, 5, 6; 7, 8, 9] 

 

 D = 

 

  1     2     3 

  4     5     6 

  7     8     9 

Note:  commas 

are optional 

MATRICES (ARRAYS) 



• Creating matrices in Matlab: 

• Method #2:  Like variable assignment: 

• Assign the last element in a 1-D matrix, 

or the ―lower right corner element‖ in a 2-

D matrix to be some value. 

• Now you have a matrix filled with zeros 

and whatever you assigned to the last 

element: 
 

    >> D(1,5) = 0 

  

 D =  0     0     0     0     0 

 

 >> D(3,3) = 10 

  

D =   0     0     0 

      0     0     0 

      0     0     10 

MATRICES (ARRAYS) 



 
• Creating matrices in Matlab (cont): 

• Method #2:  Keep assigning pieces to it: 
 

 

 >> D(1,1) = 5   ;assigning value to D(1,1)           

 

 >> D(1,2) = 6   ;assigning value to D(1,2) 

 

....... 

 

 >> D(2,3) = 7   ;assigning value to D(2,3) 

MATRICES (ARRAYS) 



 Method #2, while computationally 

expensive inside Matlab, is nevertheless 

perfectly suited for inclusion inside a 

FOR loop – particularly when you do not 

know the exact number of iterations that 

will be done (and thus, you don’t know 

the exact size of the matrix involved). 

 

FOR loops describe the second topic we 

will investigate:  ITERATION. 
 

MATRICES (ARRAYS) 



SOME BASIC MATRIX OPERATIONS 

Some of Matlab’s built-in (intrinsic) functions work 

the way we would expect, on an element-by-element 
basis for an input matrix (here called ―A‖): 

cosine: 
 

 >> cos(A) 

returns cosine of 

each element of A 

 

sqrt 
 

 >> sqrt(A) 

returns the sqrt of 

each element of A 

 

base 10 log: 
 

 >> log10(A) 

returns base 10 

logarithm of each 

element of A 

 

sine: 
 

 >> sin(A) 

returns sine of 

each element of A 

 

natural  log: 
 

 >> log(A) 

returns the natural 

logarithm of each 

element of A 

Multiplication by a 

number (scalar): 
 

 >> A*5 

returns matrix A 

with each element 

multiplied by 5. 



BASIC MATRIX OPERATIONS (cont) 

Some arithmetic operators also operate this way, 

and in particular, if give two matrix arguments ―A‖ 

and ―B‖, these operators compute on an element-by-
element basis: 

+   : 
 

 >> A + B 

returns a matrix 

containing the sum of 

each element of A and its 

corresponding element in 

B. 

-   : 
 

 >> A - B 

returns a matrix 

containing the difference 

of each element of A and 

its corresponding element 

in B. 



BASIC MATRIX OPERATIONS (cont) 

BUT Multiplication and division operate differently, 

when we are dealing with a matrix multiplied by a 

matrix. In order to do element-by-element  

multiplication or division, we need to use the ―dot‖ 
operator: 

 
 

 >> A .* B 

returns a matrix 

containing the product of 

each element of A and its 

corresponding element in 

B. 

 
 

 >> A ./ B 

returns a matrix 

containing the result of 

dividing each element of 

A by its corresponding 

element in B. 



 By the way . . .  
 

    >> D(1,5) = 0 

  

 D =  0     0     0     0     0 

 

But . . . 
 

 >> D(1,5) = 0; 

  

 >> 

Getting Matlab to ―Be Quiet!‖ 

The appearance of a semi-colon at the end of 

a statement suppresses output to the screen.  

Otherwise, Matlab echoes output back to you 

(rather inconvenient if you have a loop that 

goes for, say, 1,000 iterations!  Loops are up 

next . . . ) 



Array and Matrix 

Question:  

 

(1) Create a row array with five elements 

―10,20,30,40,50‖ 

 

(1) Create a column array with five elements 

―10,20,30,40,50‖   



Array and Matrix 

Answer:  

 

>> A=[10,20,30,40,50]  ;row array 

 

>>A=[10;20;30;40;50]   ;column array   



Array and Matrix 

Question:  

 

(1) Create a 3 X 3 matrix A with the following 

elements 

 

         1   2  3 

         4   5  6 

         7   8  9 

 

(2) Create a matrix B, and B=A*10 

 

(3) Calculate A+B, A-B, A multiply B (element by 

element), A divide B (element by element) 



Array and Matrix 

Answer: 

 

>>A=[1,2,3;4,5,6;7,8,9]  %explicit method 

 

>> A(3,3) = 0                 % element assignment method 

>> A(1,1)=0 

>> A(1,2)=1 

>> A(1,3)=3 

>>A(2,1)=4 

>>A(2,2)=5 

>>A(2,3)=6 

>>A(3,1)=7 

>>A(3,2)=8 

>>A(3,3)=9 



Array and Matrix 

Answer (continued): 

 

>> B=A*10 

 

>> A+B 

 

>>A-B 

 

>>A.*B  %comment: use ―.‖operator, different from 

A*B 

 

>>A./B  %comment: use ―.‖operator 



Array and Matrix 

Question:  

 

Create a 11 X 11 matrix A with all elements equal 50? 

Then change the value at the center to 100? 



Array and Matrix 

Answer:  

 

>> A(11,11)=0 %create an 11 X 11 matrix with all 

elements equal to 0 

 

>>A=A+10      % all elements in A are added by 10 

 

>>A(6,6)=100  %element A(6,6) is assigned to 100 



CHAPTER 6 

 

ITERATION I:  FOR LOOPS 



ITERATION 

• Often times, we’ll want to repeat doing 

something again, and again, and again, and 

again…maybe millions of times…or maybe, 

just enough times to access and change 

each element of a matrix. 

 

• Computers, of course, are great at doing 

things over and over again 

 

• This is called ITERATION. 

 

• Iteration is executed with a FOR loop, or, 

with a WHILE loop. 

 



ITERATION (FOR loops) 

• Syntax:  As shown, and always the same.  NOTE:  

The keywords FOR and END come in a pair—never one 

without the other. 

 
    for n = [1:5] 

           statements 

    end 

 
 

•What’s happening: 

• n first assigned the value 1 

• the statements are then executed 

• END is encountered 

• END sends execution back to the top 

• Repeat:  n = 2, 3, 4, 5 

• Is n at the end of the list?  Then STOP. 

―Loop body‖ 

(always indented) 

SIDE NOTE: 

n = [1:5] 

same as 

n = [1,2,3,4,5], 

same as 

n = 1:5 

loop index 



ITERATION (FOR loops) 

• Syntax:  As shown, and always the same.  NOTE:  

The keywords FOR and END come in a pair—never one 

without the other. 

 
    for n = [1:5] 

           statements 

    end 

 
 

• Key Features: 

• The FOR loop executes for a finite  

     number of steps and then quits. 

• Because of this feature, it’s hard to 

     have an infinite loop with a FOR loop. 

• You can NEVER change a FOR loop’s 

     index counter (here, called ―n‖). 

SIDE NOTE: 

n = [1:5] 

same as 

n = [1,2,3,4,5], 

same as 

n = 1:5 

Can  be any 

values, not 

limited to 1-5! 

loop index 

―Loop body‖ 

(always indented) 



ITERATION (FOR loops) 

• So, a FOR loop is doing ―implicit 

assignment‖ to the loop index n:  each time 

―through the loop‖ (or, one ―trip‖), the loop 

index n has a particular value (which can’t 

be changed by you, only by the FOR loop).  

After the trip is complete (when execution 

reaches END), the loop index is reassigned 

to the next value in the 1-D matrix, from left 

to right.  When the rightmost (last) value is 

reached, the FOR loop stops executing. 

 

And then statements AFTER the FOR loop 

(following the END keyword) are executed --

that is, the FOR loop ―exits‖. 



ITERATION (FOR loops) – YOUR TURN! 

Instructions: 

 

For the next several examples, please try to 

work out the answers without running the code 

in Matlab.  This is essential, as it will enable 

you to develop your ―Matlab intuition‖ and also 

to visualize the sequence of a computation 

(thus developing your ability to think 

algorithmically).  Furthermore, you will not be 

allowed to use Matlab software on exams or 

quizzes and so it’s better to get the practice 

now rather than wait until later!  You may, 

however, use scratch paper to work out 

answers. 



for  n = [1:5] 

    n 

end  

This will print out the value of n, for each 

iteration of the loop.  Why?  Because the 
statement   n    is NOT terminated with a 

semi-colon: 

ans =  1 

ans =  2 

ans =  3 

ans =  4 

ans =  5 

ITERATION (FOR loops) – YOUR TURN! 

Example 10: 



for  n = [1:5] 

    n^2 

end  

ans =  1 

ans =  4 

ans =  9 

ans =  16 

ans =  25 

This FOR loop will print out: 

ITERATION (FOR loops) – YOUR TURN! 

Example 11: 



ans =  ? 

ans =  ? 

ans =  ? 

ans =  ? 

ans =  ? 

What will this FOR loop print out? 

for  n = [1:5] 

    n^3 - 5 

end  

ITERATION (FOR loops) – YOUR TURN! 

Example 12: 



ans =  -4 

ans =  3 

ans =  22 

ans =  59 

ans =  120 

What will this FOR loop print out? 

for  n = [1:5] 

    n^3 - 5 

end  

ITERATION (FOR loops) – YOUR TURN! 

Example 12: 



counter = 1; 

for  n = [1:5] 

    counter = counter + n 

end  

What will this FOR loop print out? 

ITERATION (FOR loops) – YOUR TURN! 

counter =  ? 

counter =  ? 

counter =  ? 

counter =  ? 

counter =  ? 

Why, all of a 

sudden, ―counter‖ 

and NOT ―ans‖? 

Example 13: 



counter = 1; 

for  n = [1:5] 

    counter = counter + n 

end  

What will this FOR loop print out? 

ITERATION (FOR loops) – YOUR TURN! 

counter =  2 

counter =  4 

counter =  7 

counter =  11 

counter =  16 

Why, all of a 

sudden, ―counter‖ 

and NOT ―ans‖? 

Example 13: 



counter = 1; 

for  n = [1:5] 

    counter = counter - n 

end  

What will this FOR loop print out? 

ITERATION (FOR loops) – YOUR TURN! 

counter =  ? 

counter =  ? 

counter =  ? 

counter =  ? 

counter =  ? 

Example 14: 



counter = 1; 

for  n = [1:5] 

    counter = counter - n 

end  

What will this FOR loop print out? 

ITERATION (FOR loops) – YOUR TURN! 

counter =  0 

counter =  -2 

counter =  -5 

counter =  -9 

counter =  -14 

Example 14: 



counter = 1; 

for  n = [1:5] 

    counter = counter*n 

end  

What will this FOR loop print out? 

counter =  ? 

counter =  ? 

counter =  ? 

counter =  ? 

counter =  ? 

ITERATION (FOR loops) – YOUR TURN! 

Example 15: 



counter = 1; 

for  n = [1:5] 

    counter = counter*n 

end  

What will this FOR loop print out? 

counter =  1 

counter =  2 

counter =  6 

counter =  24 

counter =  120 

ITERATION (FOR loops) – YOUR TURN! 

Example 15: 



A = [5 4 3 2 1]; 

for  n = [1:5] 

    A(1,n) 

end  

What will this FOR loop print out? 

ans  =  ? 

ans  =  ? 

ans  =  ? 

ans  =  ? 

ans  =  ? 

ITERATION (FOR loops) – YOUR TURN! 

Example 16: 



A = [5 4 3 2 1]; 

for  n = [1:5] 

    A(1,n) 

end  

What will this FOR loop print out? 

ans =  5 

ans =  4 

ans =  3 

ans =  2 

ans =  1 

ITERATION (FOR loops) – YOUR TURN! 

Example 16: 



A = [5 4 3 2 1]; 

counter = 0; 

for  n = [1:5] 

    A(1,n)= A(1,n) + counter; 

    counter = counter + 1; 

end 

A 

ITERATION (FOR loops) – YOUR TURN! 

A  =  ? 

What will print out? 

Example 17: 



A = [5 4 3 2 1]; 

counter = 0; 

for  n = [1:5] 

    A(1,n)= A(1,n) + counter; 

    counter = counter + 1; 

end 

A 

ITERATION (FOR loops) – YOUR TURN! 

A =   

     5     5     5     5     5 

What will print out? 

Example 17: 



(Stopped Here on Sep. 27, 2011) 



(Begin Here on Sep. 29, 2011) 



ITERATION 

(FOR loops with variable indexing, I) 

• Syntax:  In the case of variable indexing, the loop index 

steps forward by an amount other than 1: 

 
    for n = [1:2:15] 

           statements 

    end 

 
 

• Key Features: 
• In this FOR loop, the index variable  n  first takes 

on the value 1 and then, each trip through the loop, it 

is increased by 2, up to the limit 15.  What this 
means is that the index variable  n  takes on the 

following values:  1, 3, 5, 7, 9, 11, 13, 15 



ITERATION 

(FOR loops with variable indexing, II) 

• Syntax:  In this second case of variable indexing, the 

loop index steps backward by an amount other than 1: 

 
    for n = [15:-2:1] 

           statements 

    end 

 
 

• Key Features: 
• In this second FOR loop, the index variable  n  first 

takes on the value 15 and then, each trip through the 

loop, it is decreased by 2, down to the limit 1.  What 
this means is that the index variable  n  takes on the 

following values:  15, 13, 11, 9, 7, 5, 3, 1 



ITERATION 

(FOR loops with variable indexing, III) 

• Syntax:  In this third case of variable indexing, the loop 

index steps forward, but by an amount less than 1: 

 
    for n = [0.1: 0.1 : 1.0] 

           statements 

    end 

 

• Key Features: 
 In this third FOR loop, the index variable  n  first takes 

on the value 0.1 and then, each trip through the loop, it is 

increased by 0.1, up to the limit 1.0.  What this means is 
that the index variable  n  takes on the following values:  

0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0  .  Thus, the 
index variable  n  need not be assigned integer values!  

Furthermore, we could do the above in reverse, too, as 
follows:  n = [1.0: -0.1 : 0.1] 



Example 19: A = [5 4 3 2 1]; 

counter = 1; 

for  n = [1:2:9] 

    A(1,counter)= A(1,counter) + n; 

    counter = counter + 1; 

end 

A  

A  =  ? 

What will print out? 

ITERATION 

(FOR loops; variable indexing)—YOUR TURN 



Example 19: A = [5 4 3 2 1]; 

counter = 1; 

for  n = [1:2:9] 

    A(1,counter)= A(1,counter) + n; 

    counter = counter + 1; 

end 

A  

A = 

     6     7     8     9    10 

What will print out? 

ITERATION 

(FOR loops; variable indexing)—YOUR TURN 



ITERATION (FOR loops) 

Study the preceding discussions and example 

problems VERY CAREFULLY to ensure that you 

understand completely what each FOR loop is 

doing, AND WHY! 

 

These problems are VERY REPRESENTATIVE of 

those you might encounter in the future . . .  



(Stopped Here on Sep. 29, 2011) 



(Begin Here on Oct. 4, 2011) 



CHAPTER 7 

 

Write a Matlab Program 



Matlab Tutorial Video 
1. Online demo video - Writing a Matlab Program (05:43)  

•http://www.mathworks.com/videos/matlab/writing-a-

matlab-program.html 

 

 

Links are also available at class website resource page: 

http://solar.gmu.edu/teaching/2011_CDS130/Resources.html 

 



Write a Matlab program 
Exercise: create a Matlab program file named as 

―prey.m‖ with the following codes. Make sure that 

you save the file and run the code without an error.  

clear 

R(1)=100.0   %initial population of rabbits 

F(1)=20.0    %initial population of foxs 

BR_rabbit=0.5     %birth rate of rabbit  

DR_rabbit_INT=0.02   %death date of rabbit (prey) due to interaction 

DR_fox=0.1     %death rate of fox 

BR_fox_INT= 0.001 % birth rate of fox (predator) due to interaction 

 

for i=1:40 

  R(i+1)=R(i)+BR_rabbit*R(i)-DR_rabbit_INT*R(i)*F(i) 

  F(i+1)=F(i)-DR_fox*F(i)+BR_fox_INT*F(i)*R(i) 

end 

 

figure(1); plot(R,'*') 

figure(2); plot(F,'-') 



CHAPTER 8 

 

BASIC GRAPHS AND PLOTS 



Sample 

clear 

B(1)=1000; 

rate = 0.15; 

for i = [1:19] 

   B(i+1) = B(i)+rate*B(i); 

end  

B 

scientific model:  

 

Every year your bank account balance increases by 15%.  

The initial balance in the first year is $1000.  

What are the balances in 20 years? 



Let’s begin by creating the graph on the right with 

the Matlab code on the left . . . 

clear 

B(1)=1000; 

rate = 0.15; 

for i = [1:19] 

   B(i+1) = B(i)+rate*B(i); 

end  

plot(B) 

 

BASIC GRAPHS and PLOTS 



First, give the graph a name (internal to Matlab) by 

using the figure command: 

When you re-run this code, there’s no visible effect, but the 

plot now has a name (meaning it won’t be overwritten later!) 

BASIC GRAPHS and PLOTS 

clear 

B(1)=1000; 

rate = 0.15; 

for i = [1:19] 

   B(i+1) = B(i)+rate*B(i); 

end  

figure(1) 

plot(B) 

 



Next, give the graph a title  

by using the title command: 

BASIC GRAPHS and PLOTS 

clear 

B(1)=1000; 

rate = 0.15; 

for i = [1:19] 

   B(i+1) = B(i)+rate*B(i); 

end  

figure(1) 

plot(B) 

title(‘Bank account balance’) 



Change the title’s font:  continue on next line and use 

the FontName, FontSize and FontWeight commands: 

Continue on the next line 

with three dots in a row 

BASIC GRAPHS and PLOTS 

clear 

B(1)=1000; 

rate = 0.15; 

for i = [1:19] 

   B(i+1) = B(i)+rate*B(i); 

end  

figure(1) 

plot(B) 

title(‘Bank account balance’, ... 

   ‘FontName’, ‘Arial’, ... 

   ‘FontSize’, 12, ... 

   ‘FontWeight’, ‘Bold’) 



Add X and Y axis labels: 

use the xlabel and ylabel commands: 

You can also change X and Y axis fonts, sizes, etc, just like for the title 

BASIC GRAPHS and PLOTS 

clear 

B(1)=1000; 

rate = 0.15; 

for i = [1:19] 

   B(i+1) = B(i)+rate*B(i); 

end  

figure(1) 

plot(B) 

title(‘Bank account balance’, ... 

   ‘FontName’, ‘Arial’, ... 

   ‘FontSize’, 12, ... 

   ‘FontWeight’, ‘Bold’) 

xlabel(‘Years’) 

ylabel(‘Dollars in account’)  

 



Change X and Y axis ranges: 

use the xlim and ylim commands: 

BASIC GRAPHS and PLOTS 

clear 

B(1)=1000; 

rate = 0.15; 

for i = [1:19] 

   B(i+1) = B(i)+rate*B(i); 

end  

figure(1) 

plot(B) 

title(‘Bank account balance’, ... 

   ‘FontName’, ‘Arial’, ... 

   ‘FontSize’, 12, ... 

   ‘FontWeight’, ‘Bold’) 

xlabel(‘Years’) 

ylabel(‘Dollars in account’) 

xlim([1 21]) 

ylim([1000 16000])  

 

 



Now, change the plot: 

Let it have a red line and  datamarkers: 

BASIC GRAPHS and PLOTS 

clear 

B(1)=1000; 

rate = 0.15; 

for i = [1:19] 

   B(i+1) = B(i)+rate*B(i); 

end  

figure(1) 

plot(B,‟-*r‟) 

title(‘Bank account balance’, ... 

   ‘FontName’, ‘Arial’, ... 

   ‘FontSize’, 12, ... 

   ‘FontWeight’, ‘Bold’) 

xlabel(‘Years’) 

ylabel(‘Dollars in account’) 

xlim([1 21]) 

ylim([1000 16000])  

 

 



Finally, insert some text annotation on the graph 

using the text command, and control its properties: 

Again, font size, weight, etc. can be 

controlled just like the title command 

BASIC GRAPHS and PLOTS 

clear 

B(1)=1000; 

rate = 0.15; 

for i = [1:19] 

   B(i+1) = B(i)+rate*B(i); 

end  

figure(1) 

plot(B,‟-*r‟) 

title(‘Bank account balance’, 

... 

   ‘FontName’, ‘Arial’, ... 

   ‘FontSize’, 12, ... 

   ‘FontWeight’, ‘Bold’) 

xlabel(‘Years’) 

ylabel(‘Dollars in account’) 

xlim([1 21]) 

ylim([1000 16000])  

text(4,8000,‘Rate = 15%’, ... 

‘FontName’,‘Arial’, ... 

‘FontSize’,14) 



Now, switch to the window containing the figure and click 

on ―File‖: 

BASIC GRAPHS and PLOTS 



Select ―Save As‖: 

BASIC GRAPHS and PLOTS 



Navigate to the directory where you want to save the file, 

enter a filename, and ensure ―Save as Type‖ is ―PNG‖: 

BASIC GRAPHS and PLOTS 



You’ll be taken back to the figure.  It will flash white for 

an instant: 

BASIC GRAPHS and PLOTS 



And then it will return to its ―normal self‖, with a grey 

background.  The image has been saved . . . 

BASIC GRAPHS and PLOTS 



Which you can now verify by inspecting the directory 

structure: 

BASIC GRAPHS and PLOTS 



Now you can open Microsoft Word: 

BASIC GRAPHS and PLOTS 



And paste your .PNG graph right onto the page: 

BASIC GRAPHS and PLOTS 



(Stopped Here on Oct. 04, 2011) 



(Begin Here on Nov. 1, 2011) 



CHAPTER 9 

 

ITERATION II:  DOUBLE-NESTED FOR LOOPS 

(DNFL) 



ITERATION: 

Double Nested FOR Loops (DNFL) 

Now we come to a very important syntactic structure, 

the Double Nested FOR Loop (aka, ―DNFL‖) 

 

This is important precisely because double nested 

FOR loops enable us to ―walk through‖ a two 

dimensional matrix, element by element. 

 

This is the basis for image processing algorithms. 



• Syntax:  As shown, and always the same (except for the end 

limit of the indexes  m  and  n, which could be any number other 

than 3—and frequently will be!) 

 

 
  for m = [1:3] 

     for n = [1:3] 

             statements 

     end 

  end 

ITERATION:  DNFL 

inner loop outer loop 



    for m = [1:3] 

       for n = [1:3] 

               statements 

       end 

    end 

 
 

What’s happening: 
• m  is assigned the value 1 

• n  is assigned the value 1 

• the statements are executed 

• the first end is encountered, sending execution to 

     the top of the inner loop .  More to do?  If not, then . . .  
• the second end is encountered, sending execution to 

      the top of the outer loop.    More to do?  If not, then EXIT 

      the outer loop and program execution continues onward, 

      immediately following the second end statement. 

ITERATION:  DNFL 

inner loop outer loop 



    for m = [1:3] 

       m 

       for n = [1:3] 

     n 

       end 

    end 

 

Simple example:  When the above code is run, we get  the 

following output  . . .  

 
  m = 1  m = 2  m = 3 

  n = 1  n = 1  n = 1 

  n = 2  n = 2  n = 2 

  n = 3  n = 3  n = 3 

ITERATION:  DNFL 

inner loop 
outer loop 

Second iteration outer; 

inner iterates 3 times 

First iteration outer; 

inner iterates 3 times 

Third iteration outer; 

inner iterates 3 times 



Instructions: 

 

For the next several examples, please try to 

work out the answers without running the code 

in Matlab.  This is essential, as it will enable 

you to develop your ―Matlab intuition‖ and also 

to visualize the sequence of a computation 

(thus developing your ability to think 

algorithmically).  Furthermore, you will not be 

allowed to use Matlab software on exams or 

quizzes and so it’s better to get the practice 

now rather than wait until later!  You may, 

however, use scratch paper to work out 

answers. 

ITERATION:  DNFL – YOUR TURN! 



    a = 1; 

    b = 1; 

    for m = [1:3] 

       for n = [1:3] 

               a 

     b 

       end 

    end 

 

 

What is printed out by the above Double Nested FOR loop? 

ITERATION:  DNFL – YOUR TURN! 

Example: 



    a = 1; 

    b = 1; 

    for m = [1:3] 

       for n = [1:3] 

               a 

     b 

       end 

    end 

 

 

What is printed out by the above Double Nested FOR loop? 

ITERATION:  DNFL – YOUR TURN! 

Example: 

a = 1 

b = 1 

(repeated nine times) 



    a = 1; 

    b = 1; 

    for m = [1:3] 

       for n = [1:3] 

               a = a + 1; 

     b = b + a 

       end 

    end 

 

 

What is printed out by the above Double Nested FOR loop? 

(You can use a calculator) 

ITERATION:  DNFL – YOUR TURN! 

Example: 



    a = 1; 

    b = 1; 

    for m = [1:3] 

       for n = [1:3] 

               a = a + 1; 

     b = b + a 

       end 

    end 

ITERATION:  DNFL – YOUR TURN! 

Example: 

b =   3 b =   15 b =   36 

b =   6 b =   21 b =   45 

b =   10 b =   28 b =   55 

When m = 1 When m = 2 When m = 3 



(Stopped Here on Nov. 01, 2011) 



(Begin Here on Nov. 3, 2011) 



    a = 1; 

    b = 1; 

    for m = [1:3] 

       for n = [1:3] 

               a = a + b; 

     b = b + a 

       end 

    end 

 

 

What is printed out by the above Double Nested FOR loop? 

(You can use a calculator) 

ITERATION:  DNFL – YOUR TURN! 

Example: 



    a = 1; 

    b = 1; 

    for m = [1:3] 

       for n = [1:3] 

               a = a + b; 

     b = b + a 

       end 

    end 

ITERATION:  DNFL – YOUR TURN! 

Example: 

b =  3 b =  55 b =  987 

b =  8 b =  144 b =  2584 

b =  21 b =  377 b =  6765 

When m = 1 When m = 2 When m = 3 



    a = 2; 

    b = 3; 

    for m = [1:3] 

       for n = [1:3] 

               a = a + b; 

     b = b + 1 

       end 

    end 

 

 

What is printed out by the above Double Nested FOR loop? 

(You can use a calculator—HINT:  IF you really, really need one!) 

ITERATION:  DNFL – YOUR TURN! 

Example: 



    a = 2; 

    b = 3; 

    for m = [1:3] 

       for n = [1:3] 

               a = a + b; 

     b = b + 1 

       end 

    end 

ITERATION:  DNFL – YOUR TURN! 

Example: 

b =  4 b =  7 b =  10 

b =  5 b =  8 b =  11 

b =  6 b =  9 b =  12 

When m = 1 When m = 2 When m = 3 



    A(3,3) = 0; 

    for m = [1:3] 

       for n = [1:3] 

               A(m,n) = m; 

       end 

    end 

    A 

 

 

What is printed out by the above Double Nested FOR loop? 

ITERATION:  DNFL – YOUR TURN! 

Example: 



    A(3,3) = 0; 

    for m = [1:3] 

       for n = [1:3] 

               A(m,n) = m; 

       end 

    end 

    A 

ITERATION:  DNFL – YOUR TURN! 

Example: 

A = 

 

     1     1     1 

     2     2     2 

     3     3     3 



    A(3,3) = 0; 

    for m = [1:3] 

       for n = [1:3] 

               A(m,n) = n; 

       end 

    end 

    A 

 

 

What is printed out by the above Double Nested FOR loop? 

ITERATION:  DNFL – YOUR TURN! 

Example: 



    A(3,3) = 0; 

    for m = [1:3] 

       for n = [1:3] 

               A(m,n) = n; 

       end 

    end 

    A 

ITERATION:  DNFL – YOUR TURN! 

Example: 

A = 

 

     1     2     3 

     1     2     3 

     1     2     3 



    A = [1, 2, 3; 4, 5, 6; 7, 8, 9]; 

    for m = [1:3] 

       for n = [1:3] 

               A(m,n) = m - n; 

       end 

    end 

    A 

 

 

What is printed out by the above Double Nested FOR loop? 

ITERATION:  DNFL – YOUR TURN! 

Example: 



    A = [1, 2, 3; 4, 5, 6; 7, 8, 9]; 

    for m = [1:3] 

       for n = [1:3] 

               A(m,n) = m - n; 

       end 

    end 

    A 

ITERATION:  DNFL – YOUR TURN! 

Example: 

A = 

 

     0    -1    -2 

     1     0    -1 

     2     1     0 



    A = [1, 2, 3; 4, 5, 6; 7, 8, 9]; 

    for m = [1:3] 

       for n = [1:3] 

               A(m,n) = m*n + 1; 

       end 

    end 

    A 

 

 

What is printed out by the above Double Nested FOR loop? 

ITERATION:  DNFL – YOUR TURN! 

Example: 



    A = [1, 2, 3; 4, 5, 6; 7, 8, 9]; 

    for m = [1:3] 

       for n = [1:3] 

               A(m,n) = m*n + 1; 

       end 

    end 

    A 

ITERATION:  DNFL – YOUR TURN! 

Example: 

A = 

 

     2     3     4 

     3     5     7 

     4     7    10 



    A = [1, 2, 3; 4, 5, 6; 7, 8, 9]; 

    B = [1 -2  2; 2 -2 3; 3 -3 4]; 

    C(3,3) = 0; 

    for m = [1:3] 

       for n = [1:3] 

     C(m,n) = A(m,n) - B(m,n); 

     C(m,n) = C(m,n)*(-1); 

       end 

    end 

    C 

 

 

What is printed out by the above Double Nested FOR loop? 

ITERATION:  DNFL – YOUR TURN! 

Example: 



    A = [1, 2, 3; 4, 5, 6; 7, 8, 9]; 

    B = [1 -2  2; 2 -2 3; 3 -3 4]; 

    C(3,3) = 0; 

    for m = [1:3] 

       for n = [1:3] 

     C(m,n) = A(m,n) - B(m,n); 

     C(m,n) = C(m,n)*(-1); 

       end 

    end 

    C 

ITERATION:  DNFL – YOUR TURN! 

Example: 

C = 

 

     0    -4    -1 

    -2    -7    -3 

    -4   -11    -5 



DNFL: Accessing Pieces of a Matrix 

A two dimensional array called ―B‖ 

Columns (n) 

Rows (m) 

This is element B(1,3)  

(first row, third column) 

This is element B(4,2) 

(fourth row, second column) 

This is element B(5,5) 

(fifth row, fifth column) 

―B‖ is a 5x5 array:  5 rows by 5 columns 



DNFL: Accessing Pieces of a Matrix 

Columns (n) 

Rows (m) 

This is element B(1,1) (first row, first column) 

This is element B(1,2) (first row, second column) 

This is element B(1,3) (first row, third column) 

This is element B(1,4) (first row, fourth column) 

This is element B(1,5) (first row, fifth column) 



DNFL: Accessing Pieces of a Matrix 

Columns (n) 

Rows (m) 

This is element B(1,3) (first row, third column) 

This is element B(2,3) (second row, third column) 

This is element B(3,3) (third row, third column) 

This is element B(4,3) (fourth row, third column) 

This is element B(5,3) (fifth row, third column) 



DNFL: Accessing Pieces of a Matrix 

Columns (n) 

Rows (m) 

Accessing all the pink colored elements 

(and in this case, printing them out): 

     

 for m = 1:5 

      for n = 1:5 

                  B(m, n) 

         end 

 end 

Notice that to access a particular row, 

we vary the row index m.  To access a 

particular column, we vary the column 

index, n.  In this case, varying m and n 

each from 1 to 5 will enable us to access 

ALL ELEMENTS of the ENTIRE ARRAY B 

(in this case, print them out):  We’re 

going down 5 rows and across 5 

columns. 

or, n = [1:5] 

or, m = [1:5] 



DNFL: Accessing Pieces of a Matrix 

Columns (n) 

Rows (m) 

Accessing all the green colored elements 

(and in this case, printing them out): 

 

    for m = 1:3 

      for n = 1:5 

                  B(m,n) 

      end 

    end 

Here, to access a particular row, we vary 

the row index m and to access a 

particular column, we vary the column 

index n.  In this second case, we vary m 

from 1 to 3, and n from 1 to 5.  Doing so 

will allow us to access (and in this case 

print out), all the green colored elements. 

or, n = [1:5] 

or, m = [1:3] 



DNFL: Accessing Pieces of a Matrix 

Columns (n) 

Rows (m) 

Accessing all the blue colored elements 

(and in this case, printing them out): 

 

    for m = 1:5 

             B(m,3) 

    end 

In this third case we keep the column 

index, n, held constant and vary the row 

index m.  Since we vary m and hold n 

constant, we are able to selectively print 

out the third column of the array B. 

or, m = [1:5] 



DNFL: Accessing Pieces of a Matrix 

Columns (n) 

Rows (m) 

Accessing all the orange colored 

elements (and in this case, printing them 

out): 

    for n = 1:5 

             B(4, n) 

    end 

Now, we vary the column index n while 

keeping the row index m held constant.  

By doing so, we can selectively print out 

an entire row from the array B. 

or, n = [1:5] 



DNFL: Accessing Pieces of a Matrix 

Columns (n) 

Rows (m) 

Resetting the value of all the violet 

colored elements: 

 

    for n = 1:5 

             B(4, n) = 10; 

    end 

In this example, we keep the row index 

m held constant at 4, and vary the 

column index n from 1 to 5.  Doing so 

enables us to selectively access each of 

the elements in row 4 of array B.  Each 

time we access an element of this row, 

we set it’s value to 10.  Now, whatever 

value was previously located in each of 

the fourth row elements is lost because 

the FOR loop assigns each element of 

row 4 to a new value:  10. 

or, n = [1:5] 



DNFL: Accessing Pieces of a Matrix 

Columns (n) 

Rows (m) 

Accessing the value of all the yellow 

colored elements and printing them out: 

 

 for m = [1, 3, 5] 

         for n = [1, 3, 5] 

                  B(m, n) 

      end 

    end 

Here, the FOR loop assigns the row 

index m and the column index n to 

values from the list, as we know.  But 

those values aren’t necessarily in 

sequential order.  The result is that we 

access NONSEQUENTIAL elements of 

array B.  In this case, we access the 

yellow elements, and print them out. 



DNFL: Accessing Pieces of a Matrix 

Columns (n) 

Rows (m) 

Accessing all the green colored elements 

(and in this case, printing them out): 

 

    for m = 1:3 

      for n = 1:5 

                  B(m,n) 

      end 

    end 

Here’s a much easier way to access the 

green colored elements, and, avoids the 

above DNFL: 

 

C = B(1:3, 1:5) 

or, n = [1:5] 

or, m = [1:3] 

Says: ―Take rows 1-3 and columns 

1-5 of B and assign them to C.‖  

Note comma, NOT semicolon! 

Let’s return, for a moment, to an earlier situation… 



DNFL: Accessing Pieces of a Matrix 

Columns (n) 

Rows (m) 

In this case, to access the green 

elements, we could write: 

 

C = B(2:4, 2:4) 

Says: ―Take rows 2-4 and columns 

2-4 of B and assign them to C.‖  

Again, note comma, NOT 

semicolon! 



CHAPTER 10 

 

CONDITIONALS:  IF STATEMENTS 



• Syntax #1:  As shown, for first variant.   

NOTE:  The keywords if and end come in a pair—

never one without the other. 

 
    if(test) 

           statements 

    end 

 
 

What’s happening in the first variant: 
• IF checks  test to see if  test is TRUE 

• if  test is TRUE, then statements are executed 

• if  test is FALSE, then nothing happens,  

    and program execution continues immediately 
    after the  end statement. 

―IF body‖ 

(always indented) 

SIDE NOTE: 

A LOGICAL 

TEST 

IF STATEMENTS (Conditionals) 



• What is this thing, ―test‖,  all about? 

 
    if(test) 

           statements 

    end 

 
• test is what’s called a ―logical test‖, or, ―conditional‖.  

It’s like asking the question, ―Is this statement true?‖ 

• Logical tests evaluate to a single truth value:  either 

TRUE, or FALSE (never both!) 
• The formal name for a test that evaluates to either 

TRUE or to FALSE, is a PREDICATE. 

IF STATEMENTS (Conditionals) 



• What is this thing, ―test‖,  all about? 

 
    if(test) 

           statements 

    end 
 

• The predicate is (usually) composed of a LHS and a RHS 

featuring ―logical operators‖ and ―relational operators‖: 
 

(logical connective)    &&   means      ―AND‖ 

(logical connective)    ||      means      ―OR‖ 

(logical connective)    ~      means     ―NOT‖ 

(relational operator)    >      means     ―Greater than‖ 

(relational operator)    <      means     ―Less than‖ 

(relational operator)    >=    means     ―Greater-than-or-equal-to‖ 

(relational operator)    <+    means     ―Less-than-or-equal-to‖ 

(relational operator)    ==    means      ―Equal-to‖ 

(relational operator)    ~=    means      ―NOT Equal-to‖ 

IF STATEMENTS (Conditionals) 



• What is this thing, ―test‖,  all about? 

 
    if(test) 

           statements 

    end 

 
• So a complete  test (or predicate) usually has a left hand 

side, one or more logical connectives and/or relational 

operators, and a right hand side. 

 
• The complete  test asks a question that is answered 

only TRUE or FALSE (or if you prefer, ―yes‖ or ―no‖) – BUT 

NEVER BOTH (called, the ―Law of the Excluded Middle‖) 

 
• Example predicate:  The test (x < y) asks the question, 

―Is x less than y?‖  There is ONLY one answer to this question:  

YES (true) or NO (false). 

IF STATEMENTS (Conditionals) 



• What is this thing, ―test‖,  all about? 

 
    if(test) 

           statements 

    end 

Predicate Example 

 

Relational 

Operator 

Equivalent Question(s) 

(x > y) > Is x greater than y? 

(x <= y) <= Is x less-than-or-

equal-to y? 

(x >= y) >= Is x greater-than-

or-equal-to y? 

(x == y) == Is x equal to y? 

IF STATEMENTS (Conditionals) 



• What is this thing, ―test‖,  all about? 

 
    if(test) 

           statements 

    end 

Predicate Example Relational / Logical / 

Relational Sequence 

Equivalent Question(s) 

(x == y)&&(a == b) ==, &&, == Is x equal to y AND 

is a equal to b? 

(x == y)||(a < b) ==, ||, < Is x equal to y OR 

is a less than b? 

(x ~= y)&&(a >= 0) ~=, &&, >= Is x NOT equal to y 

AND is a greater-

than-or-equal-to 0? 

How we write ―NOT‖ 

IF STATEMENTS (Conditionals) 



IF STATEMENTS (Conditionals)—Your Turn ! 

Instructions: 

 

For the next several examples, please try to 

work out the answers without running the code 

in Matlab.  This is essential, as it will enable 

you to develop your ―Matlab intuition‖ and also 

to visualize the sequence of a computation 

(thus developing your ability to think 

algorithmically).  Furthermore, you will not be 

allowed to use Matlab software on exams or 

quizzes and so it’s better to get the practice 

now rather than wait until later!  You may, 

however, use scratch paper to work out 

answers. 



Example 31: 

 
    c = 1; 

    a = 1; 

    b = 2; 

    if(a + b < 3) 

           c = c + 1; 

    end 

Question:  Will  c  be incremented by 1?  Why or why not? 

IF STATEMENTS (Conditionals)—Your Turn ! 



Example 31: 

 
    c = 1; 

    a = 1; 

    b = 2; 

    if(a + b < 3) 

           c = c + 1; 

    end 

Question:  Will  c  be incremented by 1?  Why or why not? 

No, it will not:  a + b is  

equal to 3 and not less than 3! 

IF STATEMENTS (Conditionals)—Your Turn ! 



Example 32: 
 

    c = 1; 

    a = pi; 

    b = 2; 

    if(cos(a*b) == 1) 

           c = c + 1; 

    end 

Question:  Will  c  be incremented by 1?  Why or why not? 

IF STATEMENTS (Conditionals)—Your Turn ! 



Example 32: 
 

    c = 1; 

    a = pi; 

    b = 2; 

    if(cos(a*b) == 1) 

           c = c + 1; 

    end 

Question:  Will  c  be incremented by 1?  Why or why not? 

Yes:  cosine(2*) is equal to 1 

IF STATEMENTS (Conditionals)—Your Turn ! 



Example 33: 
 

    c = 1; 

    a = pi; 

    b = 2; 

    if(cos(a*b) == 1 && a < b) 

           c = c + 1; 

    end 

Question:  Will  c  be incremented by 1?  Why or why not? 

IF STATEMENTS (Conditionals)—Your Turn ! 



Example 33: 
 

    c = 1; 

    a = pi; 

    b = 2; 

    if(cos(a*b) == 1 && a < b) 

           c = c + 1; 

    end 

Question:  Will  c  be incremented by 1?  Why or why not? 

No:  Although cosine(2*) is equal to 1, 

a is NOT less than b (rather:   > 2), 

and so BOTH CONDITIONS ARE NOT TRUE TOGETHER, 

which is what is required by AND,  

and so the statements bounded  

by IF and END will not execute! 

IF STATEMENTS (Conditionals)—Your Turn ! 



Example 34: 
 

    c = 1; 

    a = pi; 

    b = 2; 

    if(cos(a*b) == 0 || a > b) 

           c = c + 1; 

    end 

Question:  Will  c  be incremented by 1?  Why or why not? 

IF STATEMENTS (Conditionals)—Your Turn ! 



Example 34: 
 

    c = 1; 

    a = pi; 

    b = 2; 

    if(cos(a*b) == 0 || a > b) 

           c = c + 1; 

    end 

Question:  Will  c  be incremented by 1?  Why or why not? 

Yes:  Although cosine(2*) is NOT equal to 0, 

in this case, we’re dealing with an OR, which 

means either the first condition OR the 

second condition can be true, and then the 

entire test is considered true. 

That happens here. 

IF STATEMENTS (Conditionals)—Your Turn ! 



Example 35: 
    c = 1; 

    for m = 1:3 

       if(m <= m^2) 

               c = c + 1; 

       end 

    end 

    c 

 

Question:  What final value of  c  is printed out? 

IF STATEMENTS (Conditionals)—Your Turn ! 



Example 35: 
    c = 1; 

    for m = 1:3 

       if(m <= m^2) 

               c = c + 1; 

       end 

    end 

    c 

 

Question:  What final value of  c  is printed out? 

c = 4 

IF STATEMENTS (Conditionals)—Your Turn ! 



Example 36: 
    a = 0; 

    c = 1; 

    for m = 1:3 

       for n = 1:3 

          if(m > n) 

                  c = c + 1; 

        a = c; 

          end 

       end 

    end 

    a 

 

Question:  What final value of  a  is printed out? 

IF STATEMENTS (Conditionals)—Your Turn ! 



Example 36: 
    a = 0; 

    c = 1; 

    for m = 1:3 

       for n = 1:3 

          if(m > n) 

                  c = c + 1; 

        a = c; 

          end 

       end 

    end 

    a 

 

Question:  What final value of  a  is printed out? 

a = 4 

IF STATEMENTS (Conditionals)—Your Turn ! 



• IF STATEMENT Syntax #2:  As shown, for second 

variant.  NOTE:  The keywords if and end come in a 

pair—never one without the other. 

 
    if(test) 

           statements 

    else 

      other stmts 

    end 

 
 

What’s happening in the second variant: 
• IF checks  test to see if  test is TRUE 

• if  test is TRUE, then statements are executed 

• if test is FALSE, then other stmts are 

 executed, and overall program execution 
 continues immediately after the  end statement. 

―IF bodies‖ 

(always indented) 

SIDE NOTE: 

A LOGICAL 

TEST 

IF STATEMENTS (Conditionals) 



IF STATEMENT Syntax #2:  A way to select 

between TRUE and FALSE: 
   

(assume a and b were  

 previously assigned) 

 

    if(cos(a*b) == 0) 

           c = c + 1; 

    else 

      c = c - 1; 

    end 

 

 

What happens now depends upon whether   cos(a*b) == 0  

evaluates to TRUE or to FALSE:  If to TRUE, then the 
statement  c = c + 1; is executed but if FALSE, then the 

statement      c = c - 1; is executed instead. 



IF STATEMENT Syntax #2:  ILLUSTRATION 
   

(assume a and b were  

 previously assigned) 

 

    A(5,5) = 0.0; 

    A = (A + 2)/2.0; 

    if(cos(a*b) == 0) 

           c = c + 1; 

    else 

      for m = [1:5] 

         for n = [1:5] 

       A(m,n) = A(m,n)/2.0 

         end 

      end   

    end 

Here, an entire 

double nested FOR 

loop is executed if 
cos(a*b) == 0 

is false!  If not, the 
variable  c  is 

incremented 

instead. 



• IF STATEMENT Syntax #3:  As shown, for third 

variant.  NOTE:  The keywords if and end come in a 

pair—never one without the other.  elseif doesn’t 

need an  end  statement: 

 
    if(first test) 

           first set of statements 

    elseif(second test) 

      second set of statements 

    elseif(third test) 

      third set of statements 

         . 

         . 

         . 

    end 

IF STATEMENTS (Conditionals) 

Multiple tests! 

Multiple tests MEANS multiple outcomes are possible! 



IF STATEMENT Syntax #3:  ILLUSTRATION 1 

 
(assume a, b and c were previously assigned) 

 
    A(5,5) = 0.0; 

    A = (A + 2)/2.0; 

    if(cos(a*b) == 0) 

           c = c + 1; 

    elseif(cos(a*b) < 0) 

      for m = [1:5] 

         for n = [1:5] 

       A(m,n) = A(m,n)/2.0 

         end 

      end 

    elseif(cos(a*b) > 0) 

      c = c - 1; 

    end 

IF STATEMENTS (Conditionals) 



IF STATEMENT Syntax #3:  ILLUSTRATION 2 

 
(assume matrix A  and variables a, b and c were all 

previously assigned) 

 

if(A(1,1) == 0 && A(1,2) == 0 && A(1,3) == 0) 

   c = c + 1; 

elseif(A(1,1) == 0 && A(1,2) == 0 && A(1,3) == 1) 

   c = c - 1; 

elseif(A(1,1) == 0 && A(1,2) == 1 && A(1,3) == 0) 

   c = a*b; 

elseif(A(1,1) == 0 && A(1,2) == 1 && A(1,3) == 1) 

   c = a/b 

elseif(A(1,1) == 1 && A(1,2) == 0 && A(1,3) == 0) 

   c = cos(a)*b 

elseif(A(1,1) == 1 && A(1,2) == 0 && A(1,3) == 1) 

   c = a*cos(b) 

elseif(A(1,1) == 1 && A(1,2) == 1 && A(1,3) == 0) 

   c = log(a*b) 

elseif(A(1,1) == 1 && A(1,2) == 1 && A(1,3) == 1) 

   c = a^b 

end 

WOW!! 

A Multi- 

Branch 

IF that 

covers eight 

possibilities! 



IF STATEMENT Syntax #3 ILLUSTRATIONS 1 & 2 

 

 

The purpose of ILLUSTRATIONS 1 & 2 was to 

demonstrate to you that by using Syntax #3 (and also 

Syntax #1 and #2), it is possible to build up some 

very complex program capability!  The ability of a 

program to evaluate conditionals and then select from 

a (possibly) wide range of available processing 

options – based on the outcome of the conditional 

evaluation – is what’s enabled by the IF statement 

and its variations. 



Example 37: 
    a = 0; 

    c = 0; 

    for m = 1:3 

       for n = 1:3 

          if(m <= n) 

                  c = c + 1; 

          end 

          if(c > a) 

                  a = a + 1; 

          end 

       end 

    end 

    a 

 

Question:  What final value of  a  is printed out? 

IF STATEMENTS (Conditionals) 



Example 37: 
    a = 0; 

    c = 0; 

    for m = 1:3 

       for n = 1:3 

          if(m <= n) 

                  c = c + 1; 

          end 

          if(c > a) 

                  a = a + 1; 

          end 

       end 

    end 

    a 

 

Question:  What final value of  a  is printed out? a = 6 

IF STATEMENTS (Conditionals) 



Example 38: 
    a = 0; 

    c = 1; 

    for m = 1:3 

       for n = 1:3 

          if(m <= n && c ~= a) 

                  c = c + 1; 

          end 

          if(c > a^2) 

                  a = a + 1; 

          end 

       end 

    end 

    a 

 

Question:  What final value of  a  is printed out? a = 6 

IF STATEMENTS (Conditionals) 



Example 38: 
    a = 0; 

    c = 1; 

    for m = 1:3 

       for n = 1:3 

          if(m <= n && c ~= a) 

                  c = c + 1; 

          end 

          if(c > a^2) 

                  a = a + 1; 

          end 

       end 

    end 

    a 

 

Question:  What final value of  a  is printed out? a = 3 

IF STATEMENTS (Conditionals) 



CHAPTER 11 

 

RANDOM NUMBERS 



GENERATING RANDOM NUMBERS 

There are two Matlab random number commands 
you need to know.  The first command, rand, 

generates a single, random, real value distributed 

uniformly between 0.0 and 1.0 (including 0.0 but 

EXCLUDING 1.0): 
EDU>> rand 

 

ans =  0.7922 

 
If we use rand on the right hand side of an 

assignment statement, we can capture the random 

value into a variable: 

 
EDU>> randnum = rand 

 

randnum =  0.9058 



GENERATING RANDOM NUMBERS 

Actually, using rand, we can generate an entire 

matrix of random numbers distributed uniformly 

between 0.0 and 1.0 (including 0.0 but EXCLUDING 
the 1.0).  We do this by giving rand an integer 

argument N. rand interprets this to mean, 

―Generate an NxN matrix of random values between 

0.0 and 1.0‖ : 

 
EDU>> A = rand(3) 

 

A = 

 

    0.8147    0.9134    0.2785 

    0.9058    0.6324    0.5469 

    0.1270    0.0975    0.9575 



The second command, randi,  generates a single 

random integer, uniformly distributed between 1 and 

upperlimit (INCLUSIVE, where you specify the value 

of upperlimit): 

 
randi(upperlimit) 

 

We can use it to generate a random integer from 1 to 

upperlimit.  Again, if we use it in an assignment 

statement, we can capture the random integer into a 

variable: 
EDU>> randint = randi(100) 

 

randint =  92 

GENERATING RANDOM NUMBERS 



GENERATING RANDOM NUMBERS 

Wait a minute . . . are the values generated by rand 

REALLY uniformly distributed? 

 

Good question.  There are several ways to check.  

Let’s generate ten million of them and then work 

with them: 

 
A = [1:10000000]; 

for m = 1:10000000 

   A(m) = rand; 

end 

 

Now we have ten million random numbers, stored in 

the matrix A. 



GENERATING RANDOM NUMBERS 

One way to check the distribution – visually – is to 

plot a histogram of it: 

Not bad! 



GENERATING RANDOM NUMBERS 

A much better way, however, is to compute some 
basic statistics.  Using the function  mean  we can 

compute the mean of the distribution.  We would 

expect it to be very close to 0.5 in this case.  We’ll 
use  format long in order to get a better idea: 

 
EDU>> format long 

EDU>> mean(A) 

 

ans = 

 

   0.499999906493784 

 

Which is pretty close to 0.5, as we expect. 



CHAPTER 12 

 

ITERATION III:  WHILE LOOPS  



ITERATION (WHILE loops) 

• Syntax:  As shown, and always the same.  NOTE:  

The keywords WHILE and END come in a pair—never 

one without the other. 

 
    while (test) 

           statements 

    end 

 
 

•What’s happening: 

• WHILE loop test occurs (NO loop index!) 

• if test is TRUE, then the loop continues 
• statements inside executed 

• END sends execution back to the top 

• repeat:  WHILE loop test occurs . . .  
• stops executing statements only when test is 

FALSE . . . so, COULD GO ON FOREVER !! 

―Loop body‖ 

(always indented) 

SIDE NOTE: 

A LOGICAL 

TEST, and 

NOT a list of 

values like the 

FOR loop! 



ITERATION (WHILE loops) 

• Syntax:  As shown, and always the same.  NOTE:  

The keywords WHILE and END come in a pair—never 

one without the other. 

 
    while (test) 

           statements 

    end 

 

 
•Comments: 

• Because of the ―endless‖ feature, WHILE 

     loops require a LOT of care in their use. 

• In general, anything that can be done 

     with a WHILE loop, can be done with  

     a FOR loop. 

• So why use WHILE loops?  Convenience! 

―Loop body‖ 

(always indented) 

SIDE NOTE: 

A LOGICAL 

TEST, and 

NOT a list of 

values like the 

FOR loop! 



ITERATION (WHILE loops)–the ―test‖ 

• What is this thing, ―test‖,  all about? 

 
    while (test) 

           statements 

    end 

 
• test is what’s called a ―logical test‖, or, ―conditional‖.  It’s 

like asking the question, ―Is this statement true?‖ 

• Logical tests evaluate to a single truth value:  either 

TRUE, or FALSE (never both!) 



ITERATION (WHILE loops)–the ―test‖ 

• What is this thing, ―test‖,  all about? 

 
    while (test) 

           statements 

    end 

 

• The ―test‖ is (usually) composed of a LHS and a RHS with a 

―logical connective‖ in between: 

 

&&  means     ―AND‖ 

||     means      ―OR‖ 

~     means     ―NOT‖ 

>     means     ―Greater than‖ 

<     means     ―Less than‖ 

>=   means     ―Greater-than-or-equal-to‖ 

<+   means     ―Less-than-or-equal-to‖ 

==   means     ―Equal-to‖   (~=  means ―NOT Equal-to‖) 



ITERATION (WHILE loops)–the ―test‖ 

• What is this thing, ―test‖,  all about? 

 
    while (test) 

           statements 

    end 

 
• So a complete test (usually) has a left hand side, one or more 

logical connectives, and a right hand side. 

• The complete test asks a question that is answered TRUE 

or FALSE. 

 
• Example:  The test   (x < y) asks the question, ―Is x less 

than y?‖ 



ITERATION (WHILE loops)–the ―test‖ 

• What is this thing, ―test‖,  all about? 

 
    while (test) 

           statements 

    end 

(test) Example 

 

Logical 

Connective(s) 

Equivalent Question(s) 

(x > y) > Is x greater than y? 

(x <= y) <= Is x less-than-or-

equal-to y? 

(x >= y) >= Is x greater-than-

or-equal-to y? 

(x == y) == Is x equal to y? 



ITERATION (WHILE loops)–the ―test‖ 

• What is this thing, ―test‖,  all about? 

 
    while (test) 

           statements 

    end 

(test) Example Logical 

Connective(s) 

Equivalent Question(s) 

(x == y) && (a == b) ==, &&, == Is x equal to y AND 

is a equal to b? 

(x == y) || (a < b) ==, ||, < Is x equal to y OR 

is a less than b? 

(x ~= y) && (a >= 0) ~=, &&, >= Is x NOT equal to y 

AND is a greater-

than-or-equal-to 0? 

How we write ―NOT‖ 



ITERATION (WHILE loops)–the ―test‖ 

So, this WHILE loop: 

 
   x = 1; 

            y = 5; 

while (x < y) 

           statements 

  end 

 
will continue executing  statements as long as the test 

(x < y) remains true, that is, as long as x remains less than y. 

 

NOTE:  Since x always remains less than y, we have that 

never-ending situation called an INFINITE LOOP! 

 

 

(Usually (but not always) infinite loops are the result of faulty 
logic and thus, should be avoided!)  



ITERATION (WHILE loops)–HELP!!! 

HELP!!! 

 

HOW TO I GET OUT OF AN INFINITE 

LOOP???? 

 
Answer:  In the Matlab command line window, 

hit ―CRTL-C‖ a couple of times (hold down 

CRTL and then hit ―C‖ several times).  That 

should do it.  But you may have to wait several 

seconds for your program to terminate while 
Matlab keeps grinding… 



ITERATION (WHILE loops)–the ―test‖ 

• Example WHILE loop: 

 
    while (test) 

           statements 

    end 

 

VERY IMPORTANT TO NOTE:   In Matlab, the numerical value  

1  also corresponds to ―true‖, and, the numerical value  0  also 

corresponds to ―false‖. 

 

• So this WHILE loop will execute forever: 

 
    while (1) 

           statements 

    end 

 

Because the test never evaluates to false! 



ITERATION (WHILE loops)–the ―test‖ 

• This WHILE loop, on the other hand will never execute, not 

even once: 

 
    while (0) 

           statements 

    end 

 

Remember:  In order for the WHILE loop to execute, the test 

must evaluate to true (at least once), and for it to stop 

executing, the test must at some point evaluate to false. 



ITERATION (WHILE loops)–the ―test‖ 

• Note also that if the test is compound, meaning, put together 

with a number of different logical connectives, then, the entire 

test must evaluate to true for the WHILE loop to execute (and, 

the entire test must evaluate to false for the WHILE loop to 

terminate!).  In the following example, both pieces connected 

by  &  must be true in order for the entire test to evaluate true: 

 
    while (x < y && y > 7) 

           statements 

    end 

 

(HINT:  Remember the rule for AND:  ―0 in, 0 out‖?  Well here 

that means if either of the conditions connected by &&   

evaluate false (value 0), then the whole test false.  So, what’s 

the only way the whole test can evaluate true?  Answer:  If both 

conditions evaluate to true, that is, both have the value 1). 



ITERATION (WHILE loops)–the ―test‖ 

•In this example, however, either piece connected by  |  must 

be true in order for the entire test to evaluate true: 

 
    while (x < y || y > 7) 

           statements 

    end 

 

(HINT:  Remember the rule for OR:  ―1 in, 1 out‖?  Well here that 
means if either of the conditions connected by  ||  evaluate 

true, then the whole test is true.  So, what’s the only way the 

entire test can evaluate false?  Answer:  If both conditions 

evaluate false. ) 



Example 39: counter = 1; 

while (counter < 5) 

    counter 

    counter = counter + 1; 

end 

This will print out the value of counter, for 

each iteration of the loop: 

counter =  1 

counter =  2 

counter =  3 

counter =  4 

ITERATION (WHILE loops)–YOUR TURN! 

Aha!  No                                   printed out.  Why not? counter =  5 



ITERATION (WHILE loops)–YOUR TURN! 

Instructions: 

 

For the remaining examples, please try to work 

out the answers without running the code in 

Matlab.  This is essential, as it will enable you 

to develop your ―Matlab intuition‖ and also to 

visualize the sequence of a computation (thus 

developing your ability to think algorithmically).  

Furthermore, you will not be allowed to use 

Matlab software on exams or quizzes and so 

it’s better to get the practice now rather than 

wait until later!  You may, however, use scratch 

paper to work out answers. 



counter = 1; 

while (counter < 5) 

    counter 

    counter = counter - 1; 

end 

What’s printed out when this WHILE loop is 

executed? 

ITERATION (WHILE loops)–YOUR TURN! 

Example 40: 



counter = 1; 

while (counter < 5) 

    counter 

    counter = counter - 1; 

end 

ITERATION (WHILE loops)–YOUR TURN! 

Example 40: 

INFINITE LOOP!!! 

 

 

Actually, a LOT is printed out.  An endless amount, 

so you have to stop execution with multiple presses 

of ―CRTL-C‖ in Matlab’s command window. 



Example 41: counter = 1; 

while (counter > 5) 

    counter 

    counter = counter + 1; 

end 

What’s printed out when this WHILE loop is 

executed? 

ITERATION (WHILE loops)–YOUR TURN! 



Example 41: counter = 1; 

while (counter > 5) 

    counter 

    counter = counter + 1; 

end 

NOTHING!! 

 

The WHILE loop never executes because counter 

is assigned the value 1, and when the WHILE loop 

test occurs, it fails the very first time. 

ITERATION (WHILE loops)–YOUR TURN! 



counter = 1; 

a = 0; 

while (counter < 5 && a < 5) 

    counter 

    counter = counter + 1; 

    a = a + 2; 

end 

What’s printed out when this WHILE loop is 

executed? 

ITERATION (WHILE loops)–YOUR TURN! 

Example 42: 



counter = 1; 

a = 0; 

while (counter < 5 && a < 5) 

    counter 

    counter = counter + 1; 

    a = a + 2; 

end 

counter =       1 

counter =       2 

counter =       3 

ITERATION (WHILE loops)–YOUR TURN! 

Example 42: 



counter = 1; 

a = 0; 

while (counter < 5 || a < 5) 

    counter 

    counter = counter + 1; 

    a = a + 2; 

end 

What’s printed out when this WHILE loop is 

executed? 

ITERATION (WHILE loops)–YOUR TURN! 

Example 43: 



counter = 1; 

a = 0; 

while (counter < 5 || a < 5) 

    counter 

    counter = counter + 1; 

    a = a + 2; 

end 

counter =       1 

counter =       2 

counter =       3 

counter =       4 

ITERATION (WHILE loops)–YOUR TURN! 

Example 43: 



counter = 1; 

a = 0; 

b = 4; 

while (counter < 5 || b < a) 

    counter 

    counter = counter + 1; 

    b = b – a; 

    a = a + 1; 

end 

What’s printed out when this WHILE loop is 

executed? 

ITERATION (WHILE loops)–YOUR TURN! 

Example 44: 



counter = 1; 

a = 0; 

b = 4; 

while (counter < 5 || b < a) 

    counter 

    counter = counter + 1; 

    b = b – a; 

    a = a + 1; 

end 

INFINITE LOOP!!! 

 

 

Actually, a LOT is printed out.  An endless amount, 

so you have to stop execution with multiple presses 

of ―CRTL-C‖ in Matlab’s command window. 

ITERATION (WHILE loops)–YOUR TURN! 

Example 44: 



counter = 1; 

A = [1:5]; 

while (A(counter) < 5) 

    counter 

    counter = counter + 1; 

end 

What’s printed out when this WHILE loop is 

executed? 

ITERATION (WHILE loops)–YOUR TURN! 

Example 45: 



counter = 1; 

A = [1:5]; 

while (A(counter) < 5) 

    counter 

    counter = counter + 1; 

end 

counter =      1 

counter =      2 

counter =      3 

counter =      4 

ITERATION (WHILE loops)–YOUR TURN! 

Example 45: 



counter = 1; 

A = [1:5]; 

while (A(counter) <= 5) 

    counter 

    counter = counter + 1; 

end 

What’s happens when this WHILE loop is executed? 

WHY? 

 

(HINT:  See red arrow, above) 

ITERATION (WHILE loops)–YOUR TURN! 

Example 46: 



counter = 1; 

A = [1:5]; 

while (A(counter) <= 5) 

    counter 

    counter = counter + 1; 

end 

??? Index exceeds matrix dimensions. 

 

Error in ==> Untitled at 4 

while (A(counter) <= 5) 

ITERATION (WHILE loops)–YOUR TURN! 

Example 46: 



counter = 1; 

A = [1:10]; 

while (A(counter) < 10) 

    counter = counter + 1; 

    A(counter+1) = A(counter) + 1;  

end 

A 

What’s printed out by the above code? (Note that the 

WHILE loop itself prints out nothing) 

ITERATION (WHILE loops)–YOUR TURN! 

Example 47: 



counter = 1; 

A = [1:10]; 

while (A(counter) < 10) 

    counter = counter + 1; 

    A(counter+1) = A(counter) + 1;  

end 

A 

A = 

 

     1   2   3   4   5   6   7   8   9  10  11 

ITERATION (WHILE loops)–YOUR TURN! 

Example 47: 



counter = 5; 

A = [1:5]; 

while (counter > 0) 

    A(counter+1) = A(counter) - 1;  

    counter = counter - 1; 

end 

A 

What’s printed out by the above code? (Note that the 

WHILE loop itself prints out nothing) 

ITERATION (WHILE loops)–YOUR TURN! 

Example 48: 



counter = 5; 

A = [1:5]; 

while (counter > 0) 

    A(counter+1) = A(counter) - 1;  

    counter = counter - 1; 

end 

A 

A = 

 

     1     0     1     2     3     4 

ITERATION (WHILE loops)–YOUR TURN! 

Example 48: 



ITERATION (WHILE loops) 

Again, study the preceding WHILE loop examples 

and problems VERY CAREFULLY to ensure that 

you understand completely what each loop is doing 

AND WHY!  Also make sure that you know how the 

―test‖ works – and why it might sometimes fail and 

result in an infinite loop. 

 

These problems are VERY REPRESENTATIVE of 

those you might encounter in the future . . .  


